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Independent transversals

An independent transversal in a vertex-partitioned graph G is a
subset 1" of vertices such that

e no edge of & joins two vertices of T’

e '/’ contains exactly one vertex from each partition class

a good committee.



When does a good committee exist?
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When does a good committee exist?

e Not always.
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The Unhappy Families Case

Suppose that

e Each faculty member belongs to one of a number of (unhappy)
FAMILIES.

e Two faculty members from the same family cannot agree on any
matter.

(We may assume no two members of the same family are in the same
department.)
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We can model this case as a bipartite graph B with vertex classes

e A: the set of departments

e X: the set of families

where each faculty member y is represented by an edge joining the
department containing y to the family containing y.
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corresponds to a set of disjoint edges in B that covers
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N OTHER WORDS: a good committee corresponds to a complete

matching from A to X in B.



Hall’s Theorem
THEOREM: The bipartite graph B has a complete matching if and only

if: For every subset S C A, the ['(S) satisfies

T(S)[ = |5].
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When does a good committee exist?
e Not always.

¢ In the Unhappy Families case: when every subset S of departments
contains representatives from at least | S| families. (Hall's Theorem.
Moreover a good committee can be found efficiently if it exists.)

18



The Big Issues Case

Suppose that

e Each faculty member has a deeply held opinion about one particular
(two-sided) ISSUE.

e Each issue captivates at most one faculty member per department.

e Two faculty members having opposite views on the same issue
cannot agree on any other matter either.
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Big—endians

A Typical Issue

Little—endians
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The SAT problem

Given a Boolean formula, does it have a satisfying truth assignment?

(5131\/33_4\/$7)/\($_1\/33_3\/332)/\(333\/$_2)/\($5\/336\/ZC_2)

e Clauses correspond to partition classes (departments)

e Variables correspond to issues
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A Typical Variable
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A satisfying truth assignment corresponds to an independent
transversal.
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When does a good committee exist?

e Not always.

¢ In the Unhappy Families case: when every subset S of departments
contains representatives from at least | S| families. (Hall's Theorem.
Moreover a good committee can be found efficiently if it exists.)

e the Big Issues case: same as deciding the SAT problem. (So we
cannot expect an efficient characterization.)
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We will see

e some sufficient conditions that guarantee the existence of an
iIndependent transversal in a given vertex-partitioned graph

e some ideas of the proofs of these results

e SOMe
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Maximum Degree

Suppose every vertex has degree at most d.

“limited personal conflict”: no faculty member is in conflict with more
than d others.
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QUESTION: When the graph has maximum degree at most d, how
big do the partition classes need to be in terms of d to guarantee the
existence of an independent transversal?
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This question was first introduced and studied by Bollobas, Erdos
and Szemerédi (1975). Also

e Jin (1992)
e Yuster (1997)
e Alon (2002)

e Szabd and Tardos (2003): gave an example with

— maximum degree d
— 2d classes
— each class of size 2d — 1

having NO independent transversal.
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THEOREM: Partition classes of size 2d suffice.
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When does a good committee exist?

Not always.

In the Unhappy Families case: when every subset S of departments

contains representatives from at least | S| families.

the Big Issues case: same as deciding the SAT problem.

if no faculty member conflicts with more than d others, and

departments all have size at least 2d.
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Suppose every vertex has degree at most d.

QUESTION: What conditions will guarantee the existence of a
PARTITION into independent transversals?

Some obvious necessary conditions:

e all partition classes have the same size

e partition classes have size at least 2d.
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Strong Colouring

Let G be a graph with n vertices, where r|n. We say G is strongly
r-colourable if for every vertex partition of G into classes of size r, there
exist » DISJOINT independent transversals.

The strong chromatic number sx(G) of GG is the smallest » for which G
Is strongly r-colourable.

QUESTION: How does the strong chromatic number depend on the
maximum degree?
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Strong chromatic number was first introduced and studied by Alon
(1988) and Fellows (1990).

In 1992, Alon proved a linear upper bound for the strong chromatic
number in terms of the maximum degree d for any graph:

sx(G) < cd.

QUESTION: What is the correct value of ¢?
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THEOREM: Every graph with maximum degree d satisfies

sx(G) < 3d—1.

THEOREM: Every graph with maximum degree d satisfies
sX(G) < (a+o(1))d.

where o« = 2.73 . ..
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Another Sufficient Condition

THEOREM (Aharoni, PH): Let G be a graph with vertex classes
Vi,..., V. Suppose that for every I C {1,....m} there exists an
independent set S; in G; = G[U;;V;] such that

every independent set T in G of size at most |I| — 1 can be extended

by a vertex of Sj.

Then G has an independent transversal.
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An Application

We can use this theorem to obtain a generalisation of Hall's Theorem
for matchings in bipartite graphs to hypermatchings in bipartite
hypergraphs.
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Hall’s Theorem
THEOREM: The bipartite graph G has a complete matching if and only

if: For every subset S C A, the ['(.S) is big enough.
Here big enough means |[I'(S)| > |S].
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A generalisation to hypergraphs

def: A 3-uniform hypergraph consists of a set V' of vertices and a set H
of hyperedges, where each hyperedge is a subset of V' of size three.

def: A bipartite 3-uniform hypergraph:
A X
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def: A complete hypermatching:

45



def: The of the subset S of A is the with vertex
set X and edge set {{x,y}: {z,x,y} € H for some z € S}.
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°1>

neighbourhood of S
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What should big enough mean?
A X
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Big enough = Has a large matching

A X

['(S) has a matching of size at least 2(|S| — 1) for each S, but there is
NO complete hypermatching.
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Hall’s Theorem for 3-uniform hypergraphs

THEOREM: The bipartite 3-uniform hypergraph G has a complete

hypermatching if: For every subset S C A, the ['(.S)
IS big enough.

Here big enough means has a matching of size at least 2(|S| — 1) + 1.
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Proof

e We'll see the idea of the proof of the theorem, specialised to our
particular application of Hall's Theorem for hypergraphs.

e The proof uses Sperner’s Lemma.
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A Special Triangulation
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Idea of Proof

Let H be a bipartite hypergraph with vertex classes A and X. Let T be
the special triangulation of the n-simplex, where n = |A| — 1.

We will the points of T" with edges of I'(A4), and each of
them with the corresponding vertex of A, such that

e edges labelling adjacent points in T are disjoint,

e the resulting colouring is a Sperner colouring.

Then the multicoloured simplex given by Sperner's Lemma is a
complete hypermatching in H.

61







































When does a good committee exist?
Not always.

In the Unhappy Families case: when every subset S of departments
contains representatives from at least |S| families.

the Big Issues case: same as deciding the SAT problem.

if no faculty member conflicts with more than d others, and
departments all have size at least 2d.

if forevery I C {1,...,m} there exists an independent set S; in G; =
G|U;erV;] such that every independent set T in GG of size at most
|I| — 1 can be extended by a vertex of Sj.
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Applications: list colouring for graphs

Let G be a graph, with vertex set V(G). Suppose each vertex v is
assigned a list L(v) C {1,2,...} of acceptable colours for v. An L-list
colouring of G is a function f : V(G) — {1,2,...} such that

e whenever vertices x and y are joined by an edge, we have f(z) #
f(y), AND

e f(v) e L(v)foreach v e V(G).

The smallest & for which EVERY list assignment L satisfying |L(v)| > k
for each v admits an L-list colouring is called the list chromatic number
of G and is denoted y;(G).
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