

Geometry of moduli spaces

20. November 2009

11 Le 102 U 1004 H

Leibniz Universität Hannover

for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimensio Geometry of $\overline{\mathcal{M}}_g$ (2)

> Moduli of abelian varieties

Enriques classification of surfaces

K3 surfaces

Automorphic forms

The Borcherds form

The moduli problem for algebraic curves (1)

C: compact Riemann surface

Examples:

• $C = \mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup \{\infty\}$ (Riemann sphere)

• $E = \mathbb{C} / \mathbb{Z} + \mathbb{Z} au$ (torus, elliptic curve)

The moduli problem for algebraic curves

The Kodaira dimension

Geometry of $\overline{\mathcal{M}}_g$ (2)

Moduli of abelian varieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

The moduli problem for algebraic curves (2)

Theorem (Riemann existence theorem, Chow's theorem): Every compact Riemann surface C is an algebraic curve, i.e. admits a holomorphic embedding $i: C \hookrightarrow \mathbb{P}^n = \mathbb{P}^n(\mathbb{C})$ and i(C) is the set of solutions of finitely many homogeneous polynomial equations.

Conclusion: It makes no difference wether one considers the classification problem for compact Riemann surfaces or for smooth projective algebraic curves (over \mathbb{C}).

The moduli problem for algebraic curves

Geometry of $\overline{\mathcal{M}}_g$ (1)

The Kodaira dimension

Geometry of $\overline{\mathcal{M}}_g$ (2)

Aoduli of abelian arieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

The moduli problem for algebraic curves (3)

Question: How can one classify algebraic curves?

The *topological* classification of orientable compact connected 2-dimensional real surfaces is given by their *genus* (= # of holes)

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2)

Aoduli of abelian arieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

The moduli problem for algebraic curves (4)

Question: How many algebraic (= holomorphic = conformal) structures exist on a topological surface of genus g?

g = 0: The algebraic structure is unique, i.e. every algebraic curve of genus 0 is isomorphic to \mathbb{P}^1 .

g = 1: Every curve of genus 1 arises as

$$E_{\tau} = \mathbb{C} / \mathbb{Z} + \tau \mathbb{Z}, \quad \operatorname{Im} \tau > 0.$$

$$\downarrow \underbrace{\tau \quad 1 + \tau}_{1} \qquad \qquad \tau \in \mathbb{H}_{1} = \{ z \in \mathbb{C}; \ \operatorname{Im} z > 0 \}.$$

Question: When is $E_{\tau} \cong E_{\tau'}$?

Moduli of abelian varieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

The moduli problem for algebraic curves (5)

The group $SL(2,\mathbb{Z})$ acts on \mathbb{H}_1 by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 : $\tau \mapsto rac{a au + b}{c au + d}$.

One shows that

$$E_{\tau} \cong E_{\tau'} \iff \tau \sim \tau' \text{ modulo } SL(2,\mathbb{Z}).$$

I.e. we consider the quotient of \mathbb{H}_1 by SL(2, \mathbb{Z}) and obtain

$$\mathcal{M}_1 = \mathsf{SL}(2,\mathbb{Z}) \setminus \mathbb{H}_1 = \{ \mathsf{elliptic curves} \} / \cong$$

Using the *j*-function $j \colon \mathbb{H}_1 \to \mathbb{C}$ one shows that

$$\overline{j}$$
: $\mathcal{M}_1 = \mathsf{SL}(2,\mathbb{Z}) \setminus \mathbb{H}_1 \cong \mathbb{C}$.

The moduli problem for algebraic curves

The moduli problem for algebraic curves (6)

Curves of genus $g \ge 2$

Riemann (1857): Curves of genus $g \ge 2$ depend on 3g - 3 "moduli".

 $\mathcal{M}_g = \{ \text{algebraic curves of genus } g \} / \cong$

Then the following holds:

- \mathcal{M}_g carries the structure of a quasi-projective variety
- dim $\mathcal{M}_g = 3g 3$
- \mathcal{M}_g is irreducible
- \mathcal{M}_g has at most finite quotient singularities.

The moduli problem for algebraic curves

The moduli problem for algebraic curves (7)

An important property of \mathcal{M}_g is the following:

Let $f: \mathcal{X} \to U$ be a family of smooth projective curves, i.e.

for every $u \in U$ the fibre $C_u = f^{-1}(u)$ is a smooth projective curve of genus g. Then the map

$$\varphi_U \colon U \to \mathcal{M}_g$$
$$u \mapsto [\mathcal{C}_u]$$

is a morphism (and \mathcal{M}_g is minimal with this property).

Formally one describes this in the language of representations of *functors* and (Deligne–Mumford) *stacks*.

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1)

Geometry of $\overline{\mathcal{M}}_g$ (2)

Moduli of abelian varieties

Enriques classification of surfaces

3 surfaces

Automorphic forms

The Borcherds form

The moduli problem for algebraic curves (8)

Compactifications of \mathcal{M}_g

 \mathcal{M}_g is a quasi-projective variety.

Question: Is there a geometrically meaningful compactification of \mathcal{M}_g ?

 $\overline{\mathcal{M}}_g := \mathsf{moduli}$ space of stable curves of genus g

Definition: A projective algebraic curve is *stable* if it has at most nodes as singularities (but it need not be irreducible) and $|Aut(C)| < \infty$.

The moduli problem for algebraic curves

Geometry of \mathcal{M}_g (1)

Geometry of $\overline{\mathcal{M}}_{g}$ (2)

Moduli of abelian varieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

The geometry of $\overline{\mathcal{M}}_g$ (1)

Fact: $\overline{\mathcal{M}}_g$ carries the structure of a projective variety containing \mathcal{M}_g as a (Zariski-)open set.

Question: What can we say about the geometry of the variety $\overline{\mathcal{M}}_g$?

Geometry of $\overline{\mathcal{M}}_{g}$ (1)

The Kodaira dimension (1)

X =projective manifold, dim_{$\mathbb{C}} X = n$.</sub>

 T_X = tangent bundle of X $\Omega^1_X = T^{\vee}_X$ = cotangent bundle of X.

The sections of Ω^1_X are 1-forms, i.e. locally of the form

$$\Omega = \sum_{i=1}^n f_i(z_1,\ldots,z_n) \, \mathrm{d} z_i$$

The moduli problem for algebraic curves

Geometry of $\overline{\mathcal{M}}_g$ (1)

The Kodaira dimension

Geometry of $\overline{\mathcal{M}}_g$ (2)

Moduli of abelian varieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

The Kodaira dimension (2)

$$\omega_X := \Lambda^n \Omega^1_X = \det \Omega^1_X = \text{canonical bundle}$$

The sections of ω_X are *n*-forms, i.e. locally of the form

$$\omega = f(z_1,\ldots,z_n) \, \mathrm{d} z_1 \wedge \ldots \wedge \mathrm{d} z_n.$$

$$\omega_X^{\otimes k} = \omega_X \otimes \ldots \otimes \omega_X$$

(k-th power of the canonical bundle, $k \geq 1$)

The sections are k-fold pluricanonical forms and locally of the form

$$\omega = f(z_1,\ldots,z_n) (\mathrm{d} z_1 \wedge \ldots \wedge \mathrm{d} z_n)^k.$$

The moduli problem for algebraic curves

Geometry of $\overline{\mathcal{M}}_g$ (1)

The Kodaira dimension

Geometry of $\overline{\mathcal{M}}_g$ (2)

Moduli of abelian varieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

The Kodaira dimension (3)

X =projective manifold, dim_{\mathbb{C}} X = n.

Definition: The k-th plurigenus of X is defined by

$$P_k(X) := \dim_{\mathbb{C}} H^0(X, \omega_X^{\otimes k})$$

i.e. the number of independent global k-fold pluricanonical forms.

The moduli problem for algebraic curves

Geometry of $\overline{\mathcal{M}}_g$ (1)

The Kodaira dimension

Geometry of $\overline{\mathcal{M}}_g$ (2

Moduli of abelian varieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

The Kodaira dimension (4)

Definition: The Kodaira dimension of X is defined as

$$\kappa(X) = \begin{cases} -\infty & \text{if } P_k(X) = 0 \text{ for all } k \ge 1 \\ 0 & \text{if } P_k(X) = 0 \text{ or 1 for all } k \ge 1 \text{ and there} \\ & \text{is at least one } k_0 \ge 1 \text{ with } P_{k_0}(X) = 1 \\ \kappa & \text{if } P_k(X) \sim c \cdot k^{\kappa} + \text{l.o.t. } (c > 0). \end{cases}$$

Remark: $\kappa(X) \in \{-\infty, 0, 1, \dots, \dim X\}.$

Definition: X is of general type if $\kappa(X) = \dim X$.

The moduli problem for algebraic curves

Geometry of $\overline{\mathcal{M}}_g$ (1)

The Kodaira dimension

Geometry of $\overline{\mathcal{M}}_g$ (2)

Moduli of abelian varieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

The Kodaira dimension (5)

In the case of curves the situation is as follows:

$$\begin{split} & \kappa(C) = -\infty \iff g(C) = 0 \iff C = \mathbb{P}^1 \\ & \kappa(C) = 0 \iff g(C) = 1 \iff C = \text{elliptic curve} \\ & \kappa(C) = 1 \iff g(C) \ge 2 \end{split}$$

The Kodaira dimension is a rough birational invariant for algebraic varieties.

The moduli problem for algebraic curves

Geometry of $\overline{\mathcal{M}}_g$ (1)

The Kodaira dimension

Geometry of $\overline{\mathcal{M}}_g$ (2)

Moduli of abelian varieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

Geometry of $\overline{\mathcal{M}}_g$ (2)

Question: What is the Kodaira dimension of (a smooth model of) $\overline{\mathcal{M}}_g$?

Theorem (Harris–Mumford, Eisenbud–Harris): $\overline{\mathcal{M}}_g$ is of general type for $g \geq 24$.

Theorem (Farkas): $\overline{\mathcal{M}}_{22}$ is of general type.

Theorem: $\kappa(\overline{\mathcal{M}}_g) = -\infty$ for $g \leq 16$.

This result is due to Severi, Sernesi, Chang, Ran, Bruno, Verra, ...

Question: $\kappa(\overline{\mathcal{M}}_g) = ?$ for $17 \le g \le 21, 23?$ Proposition (Farkas): $\kappa(\overline{\mathcal{M}}_{23}) \ge 2.$

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

Moduli of abelian varieties (1)

Abelian varieties are higher-dimensional generalisations of elliptic curves

$$E = \mathbb{C} / \mathbb{Z}\tau + \mathbb{Z} = \mathbb{C} / \Lambda_{\tau} \quad (\Lambda_{\tau} = \mathbb{Z}\tau + \mathbb{Z}).$$

A g-dimensional torus is given by

 $A = \mathbb{C}^g / \Lambda$ ($\Lambda =$ lattice of rank 2g in \mathbb{C}^g).

Clearly A is a compact complex abelian Lie group (and every such Lie group is of this form).

Definition: A torus A is called an *abelian variety* if A is projective, i.e. an embedding $A \hookrightarrow \mathbb{P}^N$ exists (for some N).

Remark: This is automatic for g = 1, but does not hold in general.


```
The moduli problem
for algebraic curves
Geometry of \overline{\mathcal{M}}_g (1)
The Kodaira dimension
Geometry of \overline{\mathcal{M}}_g (2)
Moduli of abelian
varieties
```

Enriques classification of surfaces

K3 surface

utomorphic forms

The Borcherds form

Moduli of abelian varieties (2)

Many aspects of the theory of elliptic curves carry over to abelian varieties. The *Siegel upper half plane* of genus g is defined as

$$\mathbb{H}_{g} = \{ \tau \in \mathsf{Mat}(g \times g, \mathbb{C}); \ \tau = {}^{t}\tau, \ \mathsf{Im}\, \tau > \mathsf{0} \}.$$

The integral symplectic group is defined by

$$\operatorname{Sp}(g,\mathbb{Z}) = \{ M \in \operatorname{GL}(2g,\mathbb{Z}); \ {}^{t}MJM = J \}$$

where

$$J = \left(\begin{array}{c|c} 0 & \mathbb{1}_g \\ \hline -\mathbb{1}_g & 0 \end{array} \right).$$

Remark: For g = 1

$$Sp(1,\mathbb{Z}) = SL(2,\mathbb{Z}).$$

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) **Moduli of abelian** varieties Enriques classification of surfaces *K*3 surfaces Automorphic forms The Borcherds form Further outlook

Moduli of abelian varieties (3)

The group $\operatorname{\mathsf{Sp}}(g,\mathbb{Z})$ acts on \mathbb{H}_g by

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
: $\tau \mapsto (A\tau + B)(C\tau + D)^{-1}.$

The quotient

 $\mathcal{A}_g = \mathsf{Sp}(g, \mathbb{Z}) \setminus \mathbb{H}_g = \mathsf{moduli} \mathsf{ space of principally polarized}$ abelian varieties of dimension g.

A *polarized* abelian variety is a pair (A, \mathcal{L}) where A is an abelian variety und \mathcal{L} is an ample line bundle on A.

A polarization is called *principal* if $\mathscr{L}^g = g!$.

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2)

Moduli of abelian varieties

Enriques classification of surfaces

K3 surface

utomorphic forms

The Borcherds form

Moduli of abelian varieties (4)

 \mathcal{A}_{g} has the following properties:

- \mathcal{A}_g is quasi-projective, irreducible
- dim $\mathcal{A}_g = \frac{1}{2}g(g+1)$
- \mathcal{A}_g has only finite quotient singularities.

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimensio Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian

varieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

Moduli of abelian varieties (5)

Question: What is the Kodaira dimension of (a smooth projective model of) A_g ?

Theorem: $\kappa(\mathcal{A}_g) = -\infty$ for $g \leq 5$.

 $g \le 3$: classical g = 4: Clemens g = 5: Donagi; Mori, Mukai; Verra

Theorem: A_g is of general type for $g \ge 7$.

 $g \ge 9$: Tai g = 8: Freitag g = 7: Mumford

Problem: $\kappa(\mathcal{A}_6) = ?$

Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimensio

Moduli of abelian varieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

Moduli of abelian varieties (6)

The Siegel domain \mathbb{H}_g is the hermitian symmetric space

 $\mathbb{H}_g = \mathsf{Sp}(g,\mathbb{R})/U(g)$

where U(g) is the (up to conjugation) unique maximal compact subgroup.

It can also be realised as a bounded complex domain via the *Cayley transformation*

$$\begin{split} \mathbb{H}_g &\longrightarrow D_g = \{ Z \in \mathsf{Mat}(g \times g, \mathbb{C}); \ Z = {}^t Z, \ {}^t Z \overline{Z} < \mathbb{1}_g \} \\ \tau &\longmapsto (\tau - i \cdot \mathbb{1}_g)(\tau + i \cdot \mathbb{1}_g)^{-1}. \end{split}$$

Example:

$$\mathbb{H}_1 \stackrel{\cong}{\longrightarrow} D_1 = \{ z \in \mathbb{C}; \ |z| < 1 \}.$$

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian

Moduli of abelian varieties

Enriques classification of surfaces

K3 surface

utomorphic forms

The Borcherds form

Moduli of abelian varieties (7)

Modular forms

Definition: A modular form of weight k with respect to $Sp(g, \mathbb{Z})$ is a holomorphic function

$$F: \mathbb{H}_g \longrightarrow \mathbb{C}$$

such that

$$F(M(\tau)) = (\det(C\tau + D))^k F(\tau)$$

for all
$$M = egin{pmatrix} A & B \ C & D \end{pmatrix} \in {
m Sp}(g,\mathbb{Z}).$$

Remark: For g = 1 one needs to add a condition of holomorphicity at infinity (the cusp).

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian

varieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

Moduli of abelian varieties (8)

Definition: A modular form is a *cusp form* if it vanishes at ∞ .

 $S_k(\operatorname{Sp}(g,\mathbb{Z})) = \{F; F \text{ is a cusp form of weight } k\}.$

 $\dim_{\mathbb{C}} S_k(\operatorname{Sp}(g,\mathbb{Z})) < \infty.$

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2)

Moduli of abelian varieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

Moduli of abelian varieties (9)

Modular forms and differential forms

Let F be a modular form of weight k(g+1) with respect to $\mathsf{Sp}(g,\mathbb{Z}).$ Define

$$\omega_{\mathsf{F}} = \mathsf{F} \cdot (\mathsf{d}\tau_{11} \wedge \mathsf{d}\tau_{12} \wedge \ldots \wedge \mathsf{d}\tau_{gg})^k.$$

Fact: ω_F is invariant w.r.t. $\text{Sp}(g, \mathbb{Z})$.

Hence we can view ω_F as a *k*-fold *pluricanonical form* on (an open part of) \mathcal{A}_g .

More precisely

$$\mathcal{A}_{g}^{\circ} = \mathcal{A}_{g} \setminus \{ \text{fixed points of } \mathsf{Sp}(g,\mathbb{Z}) \}$$

Then

$$\omega_{\mathsf{F}} \in H^0(\mathcal{A}_g^\circ, \ \omega_{\mathcal{A}_g^\circ}^{\otimes k}).$$

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian varieties

Enriques classification of surfaces

K3 surface

Automorphic forms

The Borcherds form

Enriques classification of surfaces

S: smooth projective surface, minimal

The Kodaira classification classifies surfaces according to Kodaira dimension.

 $\kappa(S) = -\infty$ S is rational or a geometrically ruled sur-

face $\kappa(S) = 0$ S is one of the following:

- abelian surface
- K3 surface
- Enriques surface
- bielliptic surface

 $\kappa(S) = 1$ S is elliptic fibration $\kappa(S) = 2$ S is of general type.

Enriques classification of surfaces

K3 surfaces (1)

Definition: A K3 surface is a compact complex surface with the following properties

- $\blacktriangleright \ \omega_{S} = \mathcal{O}_{S}$
- $\pi_1(S) = \{0\}.$

Examples: (1) Quartic surfaces in \mathbb{P}^3 :

$$S = \{(x_0 : x_1 : x_2 : x_3) \in \mathbb{P}^3; f_4(x_0, \dots, x_3) = 0\}$$

where f_4 is homogeneous of degree 4, general. E.g.

$$S = \{x_0^4 + x_1^4 + x_2^4 + x_3^4 = 0\}.$$

(2) Complete intersections of degree (2,3) in \mathbb{P}^4 :

$$S=\{f_2=f_3=0\}\subset \mathbb{P}^4.$$

Remark: There exist non-algebraic K3 surfaces.

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian varieties Enriques classification of surfaces **K3 surfaces** Automorphic forms The Borcherds form Further outlook

K3 surfaces (2)

The second cohomology group $H^2(S,\mathbb{Z})$ of a K3 surface has the structure of a *lattice*, i.e. it carries a non-degenerate symmetric bilinear form (given by the intersection form). More precisely

 $H^2(S,\mathbb{Z})=3U\oplus 2E_8(-1)$

where

$$U = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$$
 (hyperbolic plane)

and

$$E_8(-1) =$$
 non-degenerate, even, unimodular lattice of rank 8.

The second cohomology group with complex coefficients has a Hodge decomposition

$$H^{2}(S, \mathbb{C}) = H^{20} \oplus H^{11} \oplus H^{02} \qquad (H^{20} = \overline{H^{02}}).$$

$$(2 \text{ 0)-forms} \qquad (1 \text{ 1)-forms} \qquad (0 \text{ 2)-forms}$$

for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian varieties Enriques classification of surfaces **K3 surfaces** Automorphic forms

K3 surfaces (3)

Since $\omega_S = \mathcal{O}_S$ it follows that

 $\dim_{\mathbb{C}} H^{20} = \dim_{\mathbb{C}} H^0(S, \omega_S) = \dim_{\mathbb{C}} H^0(S, \mathcal{O}_S) = 1.$

I.e. we have a 1-dimensional subspace

$$\mathbb{C}\cong H^{20}\subset H^2(S,\mathbb{C})\cong \mathbb{C}^{22}.$$

This inclusion carries all information on S (Torelli theorem).

$$L_{K3} = 3U + 2E_8(-1)$$
 (sign(L_{K3}) = (3, 19)).

A marking of a K3 surface is an isomorphism

$$\varphi \colon H^2(S,\mathbb{Z}) \cong L_{K3}$$

This defines a 1-dimensional subspace

$$\varphi(\mathbb{C} \cdot \omega_{\mathcal{S}}) = \varphi(H^{20}) \subset L_{\mathcal{K}3} \otimes \mathbb{C}.$$

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian varieties Enriques classification of surfaces **K3 surfaces**

The Borcherds form

K3 surfaces (4)

With respect to the intersection form on $H^2(S,\mathbb{C})$ one has

 $(\omega_S, \omega_S) = 0, \quad (\omega_S, \overline{\omega}_S) > 0.$

This leads one to define

$$\Omega_{K3} = \{ [x] \in \mathbb{P}(L_{K3} \otimes \mathbb{C}); (x, x) = 0, (x, \overline{x}) > 0 \}.$$
$$\dim_{\mathbb{C}} \Omega_{K3} = 20$$

Given a marking $\varphi \colon H^2(S, \mathbb{Z}) \cong L_{K3}$ of a K3 surface one defines the *period point*

$$\varphi(\omega_S) = [\mathbb{C} \, \omega_S] \in \Omega_{K3}.$$

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_{\mathcal{G}}$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_{\mathcal{G}}$ (2) Moduli of abelian varieties Enriques classification of surfaces **K3 surfaces** Automorphic forms

K3 surfaces (5)

 $O(L_{K3}) = \{g; g \text{ is an orthogonal transformation of } L_{K3}\}.$

This group acts on Ω_{K3} .

Theorem (Torelli): The K3 surface S can be reconstructed from its period point. I.e. the quotient

 $\mathcal{M}_{K3} = O(L_{K3}) \setminus \Omega_{K3}$

is the moduli space of K3 surfaces.

Remark: The group action is badly behaved, e.g. the quotient \mathcal{M}_{K3} is not hausdorff.

11 102 1004

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_{\mathcal{G}}$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_{\mathcal{G}}$ (2) Moduli of abelian varieties Enriques classification of surfaces

K3 surfaces

Automorphic forms The Borcherds form Further outlook

K3 surfaces (6)

The situation improves when one restricts to the algebraic case, i.e. to *polarized* K3 surfaces.

A polarized K3 surface is a pair (S, \mathscr{L}) where \mathscr{L} is an ample line bundle.

Instead of ${\mathscr L}$ it suffices to consider

$$h = c_1(\mathscr{L}) \in H^2(S,\mathbb{Z}).$$

The degree of \mathscr{L} (resp. *h*) is

$$\deg \mathscr{L} = c_1(\mathscr{L})^2 = h^2 = 2d > 0$$

Question: How can we describe moduli of polarized K3 surfaces (of given degree 2d)?

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian varieties Enriques classification of surfaces **K3 surfaces** Automorphic forms

K3 surfaces (7)

If $h \in L_{K3}$ is a primitive element with $h^2 = 2d$, then

$$h_{\mathcal{L}_{K3}}^{\perp}\cong 2U\oplus 2E_8(-1)\oplus \langle -2d\rangle=:L_{2d}.$$

As before we consider

$$\Omega_{L_{2d}} = \{ [x] \in \mathbb{P}(L_{2d} \otimes \mathbb{C}); \ (x, x) = 0, \ (x, \overline{x}) > 0 \}.$$

Then

► dim $\Omega_{L_{2d}} = 19$

$$\blacktriangleright \ \Omega_{L_{2d}} = \mathcal{D}_{L_{2d}} \cup \mathcal{D}'_{L_{2d}}$$

where $\mathcal{D}_{L_{2d}}$ is a homogeneous symmetric domain of type IV.

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian varieties Enriques classification of surfaces **K3 surfaces** Automorphic forms The Borcherds form

K3 surfaces (8)

Let

$$\widetilde{O}(L_{2d}) = \{g \in O(L_{K3}); g(h) = h\}$$

and set

$$\mathcal{F}_{2d} = \widetilde{O}(L_{2d}) \setminus \Omega_{L_{2d}}.$$

Theorem (Torelli): The quotient \mathcal{F}_{2d} is the moduli space of pseudo-polarized K3 surfaces of degree 2*d*.

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian varieties Enriques classification of surfaces **K3 surfaces** Automorphic forms

The Borcherds form

K3 surfaces (9)

The action of $\widetilde{O}(L_{2d})$ on $\Omega_{L_{2d}}$ is properly discontinuous. The following holds:

- dim $\mathcal{F}_{2d} = 19$
- \mathcal{F}_{2d} has only finite quotient singularities
- \mathcal{F}_{2d} is quasi-projective (Baily–Borel).

There exist different compactifications of \mathcal{F}_{2d} :

- \mathcal{F}_{2d}^{BB} : Baily–Borel compactification
- \mathcal{F}_{2d}^{tor} : toroidal compactifications

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian varieties Enriques classification of surfaces **K3 surfaces** Automorphic forms

The Borcherds form

K3 surfaces (10)

Question: What is the Kodaira dimension of \mathcal{F}_{2d} ?

Theorem (Mukai): \mathcal{F}_{2d} is unirational (and hence $\kappa(\mathcal{F}_{2d}) = -\infty$) if $1 \le d \le 10, d = 12, 16, 17$ and 19.

Theorem (Gritsenko, H., Sankaran, 2007): \mathcal{F}_{2d} is of general type for d > 61 and d = 46, 50, 54, 57, 58, 60.

Remark (A. Peterson): \mathcal{F}_{2d} is also of general type for d = 52.

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian varieties Enriques classification of surfaces **K3 surfaces**

Automorphic forms

Automorphic forms (1)

Recall that

$$\Omega_{L_{2d}} = \{ [x] \in \mathbb{P}(L_{2d} \otimes \mathbb{C}); \ (x, x) = 0, \ (x, \overline{x}) > 0 \} = \mathcal{D}_{L_{2d}} \cup \mathcal{D}'_{L_{2d}}.$$

Let

$$(L_{2d} \otimes \mathbb{C}) \setminus \{0\} \supset \mathcal{D}_{L_{2d}}^{\bullet} = \text{affine cone over } \mathcal{D}_{L_{2d}} \subset \mathbb{P}(L_{2d} \otimes \mathbb{C})$$

and

$$O^+(L_{2d}) = \{g \in O(L_{2d}); g(\mathcal{D}_{L_{2d}}) = \mathcal{D}_{L_{2d}}\}.$$

The moduli problem
for algebraic curves
Geometry of
$$\overline{\mathcal{M}}_g$$
 (1)
The Kodaira dimension
Geometry of $\overline{\mathcal{M}}_g$ (2)
Moduli of abelian
varieties
Enriques classification
of surfaces
K3 surfaces
Automorphic forms

TI DI LI LI C

Automorphic forms (2)

Definition: Let $\Gamma \subset O^+(L_{2d})$ be a group of finite index. A modular form (automorphic form) of weight k with respect to Γ and with a character χ is a holomorphic function

$$F: \mathcal{D}_{L_{2d}}^{\bullet} \longrightarrow \mathbb{C}$$

such that

(1)
$$F(tZ) = t^{-k}F(Z)$$
 $(t \in \mathbb{C}^*)$
(2) $F(\gamma Z) = \chi(\gamma)F(Z)$ $(\gamma \in \Gamma)$.

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian varieties Enriques classification of surfaces K3 surfaces Automorphic forms

Automorphic forms (3)

Fact:
$$S_{19k}(\widetilde{O}^+(L_{2d}), \det^k) \ni F \rightsquigarrow F \cdot (dz)^k \in H^0(\mathcal{F}_{2d}^{\circ}, \omega_{\mathcal{F}_{2d}^{\circ}}^{\otimes k})$$

suitable volume form

where

$$\mathcal{F}_{2d}^{\circ} = \mathcal{F}_{2d} \setminus \{ \text{fixed points of } \widetilde{O}^+(L_{2d}) \}.$$

Question: When can one extend these forms to pluricanonical forms on a smooth projective model $\overline{\mathcal{F}}_{2d}$ of \mathcal{F}_{2d} ?

Obstructions:

- (1) *elliptic* obstructions (from singularities of $\overline{\mathcal{F}}_{2d}$)
- (2) reflective obstructions (from quasi-reflections in $\widetilde{O}^+(L_{2d})$)
- (3) *parabolic* obstructions (dz picks up poles along the boundary).

We will concentrate on (3) in the sequel.

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_{\mathcal{G}}$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_{\mathcal{G}}$ (2) Moduli of abelian varieties Enriques classification of surfaces K3 surfaces Automorphic forms

Automorphic forms (4)

Low weight cusp form trick

Assume we have a cusp form F_a of *low* weight a (i.e. $a < 19 = \dim \Omega_{L_{2d}}$), i.e.

$${\mathcal F}_{\mathsf{a}}\in {\mathcal S}_{\mathsf{a}}({\widetilde{\operatorname{O}}}^+(L_{2d}),{\operatorname{det}}^arepsilon); \quad arepsilon=0 \,\, {\operatorname{or}} \,\, 1.$$

Let k be even and consider

$$F \in F_a^k \cdot S_{k(\underbrace{19-a}_{>0})}(\widetilde{\operatorname{O}}^+(L_{2d})) \subset S_{19k}(\widetilde{\operatorname{O}}^+(L_{2d})) = S_{19k}(\widetilde{\operatorname{O}}^+(L_{2d}), \operatorname{det}^k).$$

Then

$$\omega_F = F \cdot (\mathrm{d}z)^k$$

has no poles along the boundary.

Question: Construction of low weight cusp forms?

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian varieties Enriques classification of surfaces K3 surfaces

The Borcherds form

The Borcherds form (1)

Let

$$L_{2,26} = 2U \oplus 3E_8(-1) = 2U \oplus \Lambda$$
 (Λ = Leech lattice).

Then Borcherds has constructed a modular form

$$\Phi_{12}\colon \mathcal{D}_{L_{2,26}}^{\bullet} \longrightarrow \mathbb{C}$$

of weight 12.

Idea: "Restrict" this form to $\mathcal{D}_{L_{2d}}^{\bullet}$.

Choose $l \in E_8(-1)$, $l^2 = -2d < 0$. This defines embeddings

$$L_{2d} = 2U \oplus E_8(-1) \oplus \langle -2d \rangle \hookrightarrow L_{2,26}$$

resp.

$$\Omega_{\textit{L}_{2d}} \subset \Omega_{\textit{L}_{2,26}}$$

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_{\mathcal{B}}$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_{\mathcal{B}}$ (2) Moduli of abelian varieties Enriques classification of surfaces K3 surfaces Automorphic forms **The Borcherds form**

The Borcherds form (2)

Let

$$R_l := \{r \in E_8(-1); r^2 = -2, (r, l) = 0\}$$

 $N_l := |R_l|.$

We define the "quasi-pullback" of Φ_{12} to $\mathcal{D}_{L_{2d}}^{\, \bullet}$ by

$$F_I := \frac{\Phi_{12}(z)}{\prod_{\pm r \in R_I} (r, z)} \Big|_{\mathcal{D}_{L_{2d}}^{\bullet}}.$$

Proposition: If $N_I > 0$ then

$$0 \neq F_I \in S_{12+\frac{N_I}{2}}(\widetilde{\operatorname{O}}^+(L_{2d}), \det).$$

This gives us low weight cusp forms provided

$$2 \leq N_l \leq 12$$

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_g$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_g$ (2) Moduli of abelian varieties Enriques classification of surfaces K3 surfaces Automorphic forms **The Borcherds form** Further outlook

The Borcherds form (3)

Question: When can we find $l \in E_8(-1)$ with $l^2 = -2d$ which is orthogonal to at least 2 and at most 12 roots?

Proposition: Such / exists if

 $4N_{E_7}(2d) > 28N_{E_6}(2d) + 63N_{D_6}(2d) \qquad (*)$

where $N_L(2d)$ is the number of representations of the integer 2d in the lattice L.

- One can show that (*) holds for d > 143.
- ► The remaining small *d* in the theorem can be done by a computer search.

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_{\mathcal{S}}$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_{\mathcal{S}}$ (2) Moduli of abelian varieties Enriques classification of surfaces K3 surfaces Automorphic forms **The Borcherds form** Further outlook

Further outlook (1)

This technique can also be applied to other moduli problems.

Definition: An *irreducible symplectic manifold* is a compact complex manifold X with the following properties:

- (1) X is Kähler
- (2) There exists a (up to scalar) unique non-degenerate 2-form $\omega_X \in H^0(X, \Omega_X^2) \quad (\Rightarrow \omega_X = \mathcal{O}_X)$
- (3) X is simply connected.

Examples

- (1) dim X = 2: X = S = K3 surface
- (2) X is a deformation of HilbⁿS
- (3) X is a deformation of a generalized Kummer variety
- (4) O'Grady's sporadic examples in dimension 6 and 10.

Further outlook (2)

In this case Torelli does not hold (in the strict form). However one still has a finite dominant map

where *L* is a lattice of signature (2, n) and Γ is a suitable group. General type results have been obtained in the case

 $X \sim_{def} Hilb^2 S$, split polarization (Gritsenko, H., Sankaran).

Work in progress

- $X \sim_{def} Hilb^n S$, general polarization
- O'Grady's 10-dimensional sporadic case.

The moduli problem for algebraic curves Geometry of $\overline{\mathcal{M}}_{\mathcal{G}}$ (1) The Kodaira dimension Geometry of $\overline{\mathcal{M}}_{\mathcal{G}}$ (2) Moduli of abelian varieties Enriques classification of surfaces *K*3 surfaces Automorphic forms The Borcherds form