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The moduli problem for algebraic curves (1)

C : compact Riemann surface

Examples:

▶ C = ℙ1(ℂ) = ℂ ∪ {∞} (Riemann sphere)

▶ E = ℂ / ℤ+ ℤ� (torus, elliptic curve)

−→ −→
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The moduli problem for algebraic curves (2)

Theorem (Riemann existence theorem, Chow’s theorem): Every
compact Riemann surface C is an algebraic curve, i.e. admits a
holomorphic embedding i : C ↪→ ℙn = ℙn(ℂ) and i(C ) is the set of
solutions of finitely many homogeneous polynomial equations.

Conclusion: It makes no difference wether one considers the
classification problem for compact Riemann surfaces or for smooth
projective algebraic curves (over ℂ).
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The moduli problem for algebraic curves (3)

Question: How can one classify algebraic curves?

The topological classification of orientable compact connected
2-dimensional real surfaces is given by their genus (= # of holes)

⋅ ⋅ ⋅
g = 0 g = 1 genus g
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The moduli problem for algebraic curves (4)

Question: How many algebraic (= holomorphic = conformal)
structures exist on a topological surface of genus g?

g = 0: The algebraic structure is unique, i.e. every algebraic curve
of genus 0 is isomorphic to ℙ1.

g = 1: Every curve of genus 1 arises as

E� = ℂ / ℤ+ �ℤ, Im � > 0.

� 1 + �

1

� ∈ ℍ1 = {z ∈ ℂ; Im z > 0}.

Question: When is E� ∼= E� ′?
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The moduli problem for algebraic curves (5)

The group SL(2,ℤ) acts on ℍ1 by(
a b
c d

)
: � 7→ a� + b

c� + d
.

One shows that

E� ∼= E� ′ ⇐⇒ � ∼ � ′ modulo SL(2,ℤ).

I.e. we consider the quotient of ℍ1 by SL(2,ℤ) and obtain

ℳ1 = SL(2,ℤ) ∖ℍ1 = {elliptic curves}/ ∼=

Using the j-function j : ℍ1 → ℂ one shows that

j : ℳ1 = SL(2,ℤ) ∖ℍ1
∼= ℂ.
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The moduli problem for algebraic curves (6)

Curves of genus g ≥ 2

Riemann (1857): Curves of genus g ≥ 2 depend on 3g − 3
“moduli”.

ℳg = {algebraic curves of genus g}/ ∼=

Then the following holds:

▶ ℳg carries the structure of a quasi-projective variety

▶ dimℳg = 3g − 3

▶ ℳg is irreducible

▶ ℳg has at most finite quotient singularities.
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The moduli problem for algebraic curves (7)

An important property of ℳg is the following:

Let f : X → U be a family of smooth projective curves, i.e.
Cu = f−1(u)

U
u

for every u ∈ U the fibre Cu = f −1(u) is a smooth projective curve
of genus g . Then the map

'U : U →ℳg

u 7→ [Cu]

is a morphism (and ℳg is minimal with this property).

Formally one describes this in the language of representations of
functors and (Deligne–Mumford) stacks.
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The moduli problem for algebraic curves (8)

Compactifications of ℳg

ℳg is a quasi-projective variety.

Question: Is there a geometrically meaningful compactification of
ℳg?

ℳg := moduli space of stable curves of genus g

Definition: A projective algebraic curve is stable if it has at most
nodes as singularities (but it need not be irreducible) and
∣Aut(C )∣ <∞.

1

1

2

0

g = 2 g = 4
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The geometry of ℳg (1)

Fact: ℳg carries the structure of a projective variety containing
ℳg as a (Zariski-)open set.

g = 0
ℳ0 = {pt}

g = 1
ℳ1 =ℳ1 ∪ {pt} = ℂ ∪ {pt} = ℙ1

g ≥ 2

Question: What can we say about the geometry of the variety
ℳg?
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The Kodaira dimension (1)

X = projective manifold, dimℂ X = n.

TX = tangent bundle of X

Ω1
X = T∨X = cotangent bundle of X .

The sections of Ω1
X are 1-forms, i.e. locally of the form

Ω =
n∑

i=1

fi (z1, . . . , zn) dzi .
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The Kodaira dimension (2)

!X := ΛnΩ1
X = det Ω1

X = canonical bundle

The sections of !X are n-forms, i.e. locally of the form

! = f (z1, . . . , zn) dz1 ∧ . . . ∧ dzn.

!⊗kX = !X ⊗ . . .⊗ !X

(k-th power of the canonical bundle, k ≥ 1)

The sections are k-fold pluricanonical forms and locally of the form

! = f (z1, . . . , zn) (dz1 ∧ . . . ∧ dzn)k .
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The Kodaira dimension (3)

X = projective manifold, dimℂ X = n.

Definition: The k-th plurigenus of X is defined by

Pk(X ) := dimℂ H0(X , !⊗kX )

i.e. the number of independent global k-fold pluricanonical forms.
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The Kodaira dimension (4)

Definition: The Kodaira dimension of X is defined as

�(X ) =

⎧⎨⎩
−∞ if Pk(X ) = 0 for all k ≥ 1

0 if Pk(X ) = 0 or 1 for all k ≥ 1 and there
is at least one k0 ≥ 1 with Pk0 (X ) = 1

� if Pk(X ) ∼ c ⋅ k� + l.o.t. (c > 0).

Remark: �(X ) ∈ {−∞, 0, 1, . . . , dim X}.

Definition: X is of general type if �(X ) = dim X .
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The Kodaira dimension (5)

In the case of curves the situation is as follows:

▶ �(C ) = −∞ ⇔ g(C ) = 0 ⇔ C = ℙ1

▶ �(C ) = 0 ⇔ g(C ) = 1 ⇔ C = elliptic curve

▶ �(C ) = 1 ⇔ g(C ) ≥ 2

The Kodaira dimension is a rough birational invariant for algebraic
varieties.
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Geometry of ℳg (2)

Question: What is the Kodaira dimension of (a smooth model of)
ℳg?

Theorem (Harris–Mumford, Eisenbud–Harris): ℳg is of general
type for g ≥ 24.

Theorem (Farkas): ℳ22 is of general type.

Theorem: �(ℳg ) = −∞ for g ≤ 16.

This result is due to Severi, Sernesi, Chang, Ran, Bruno, Verra, . . .

Question: �(ℳg ) = ? for 17 ≤ g ≤ 21, 23?

Proposition (Farkas): �(ℳ23) ≥ 2.
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Moduli of abelian varieties (1)

Abelian varieties are higher-dimensional generalisations of elliptic
curves

E = ℂ / ℤ� + ℤ = ℂ / Λ� (Λ� = ℤ� + ℤ).

A g -dimensional torus is given by

A = ℂg/ Λ (Λ = lattice of rank 2g in ℂg ).

Clearly A is a compact complex abelian Lie group (and every such
Lie group is of this form).

Definition: A torus A is called an abelian variety if A is projective,
i.e. an embedding A ↪→ ℙN exists (for some N).

Remark: This is automatic for g = 1, but does not hold in general.
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Moduli of abelian varieties (2)

Many aspects of the theory of elliptic curves carry over to abelian
varieties. The Siegel upper half plane of genus g is defined as

ℍg = {� ∈ Mat(g × g ,ℂ); � = t� , Im � > 0}.

The integral symplectic group is defined by

Sp(g ,ℤ) = {M ∈ GL(2g ,ℤ); tMJM = J}

where

J =

(
0 1g

−1g 0

)
.

Remark: For g = 1

Sp(1,ℤ) = SL(2,ℤ).
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Moduli of abelian varieties (3)

The group Sp(g ,ℤ) acts on ℍg by(
A B
C D

)
: � 7→ (A� + B)(C� + D)−1.

The quotient

Ag = Sp(g ,ℤ) ∖ℍg = moduli space of principally polarized

abelian varieties of dimension g .

A polarized abelian variety is a pair (A,L ) where A is an abelian
variety und L is an ample line bundle on A.

A polarization is called principal if L g = g !.
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Moduli of abelian varieties (4)

Ag has the following properties:

▶ Ag is quasi-projective, irreducible

▶ dimAg = 1
2 g(g + 1)

▶ Ag has only finite quotient singularities.

20 / 45



The moduli problem
for algebraic curves

Geometry ofℳg (1)

The Kodaira dimension

Geometry ofℳg (2)

Moduli of abelian
varieties

Enriques classification
of surfaces

K3 surfaces

Automorphic forms

The Borcherds form

Further outlook

Moduli of abelian varieties (5)

Question: What is the Kodaira dimension of (a smooth projective
model of) Ag?

Theorem: �(Ag ) = −∞ for g ≤ 5.

g ≤ 3 : classical
g = 4 : Clemens
g = 5 : Donagi; Mori, Mukai; Verra

Theorem: Ag is of general type for g ≥ 7.

g ≥ 9 : Tai
g = 8 : Freitag
g = 7 : Mumford

Problem: �(A6) = ?
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Moduli of abelian varieties (6)

The Siegel domain ℍg is the hermitian symmetric space

ℍg = Sp(g ,ℝ)/U(g)

where U(g) is the (up to conjugation) unique maximal compact
subgroup.

It can also be realised as a bounded complex domain via the
Cayley transformation

ℍg −→ Dg = {Z ∈ Mat(g × g ,ℂ); Z = tZ , tZ Z < 1g}
� 7−→ (� − i ⋅ 1g )(� + i ⋅ 1g )−1.

Example:

ℍ1
∼=−→ D1 = {z ∈ ℂ; ∣z ∣ < 1}.
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Moduli of abelian varieties (7)

Modular forms

Definition: A modular form of weight k with respect to Sp(g ,ℤ) is
a holomorphic function

F : ℍg −→ ℂ

such that
F (M(�)) = (det(C� + D))kF (�)

for all M =

(
A B
C D

)
∈ Sp(g ,ℤ).

Remark: For g = 1 one needs to add a condition of holomorphicity
at infinity (the cusp).
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Moduli of abelian varieties (8)

Definition: A modular form is a cusp form if it vanishes at ∞.

Sk(Sp(g ,ℤ)) = {F ; F is a cusp form of weight k}.

dimℂ Sk(Sp(g ,ℤ)) <∞.
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Moduli of abelian varieties (9)

Modular forms and differential forms

Let F be a modular form of weight k(g + 1) with respect to
Sp(g ,ℤ). Define

!F = F ⋅ (d�11 ∧ d�12 ∧ . . . ∧ d�gg )k .

Fact: !F is invariant w.r.t. Sp(g ,ℤ).

Hence we can view !F as a k-fold pluricanonical form on (an open
part of) Ag .

More precisely

A∘g = Ag ∖ {fixed points of Sp(g ,ℤ)}

Then
!F ∈ H0(A∘g , !⊗kA∘g ).
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Enriques classification of surfaces

S : smooth projective surface, minimal

The Kodaira classification classifies surfaces according to Kodaira
dimension.

�(S) = −∞ S is rational or a geometrically ruled sur-
face

�(S) = 0 S is one of the following:

▶ abelian surface

▶ K 3 surface

▶ Enriques surface

▶ bielliptic surface

�(S) = 1 S is elliptic fibration
�(S) = 2 S is of general type.
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K3 surfaces (1)

Definition: A K 3 surface is a compact complex surface with the
following properties

▶ !S = OS

▶ �1(S) = {0}.

Examples: (1) Quartic surfaces in ℙ3:

S = {(x0 : x1 : x2 : x3) ∈ ℙ3; f4(x0, . . . , x3) = 0}

where f4 is homogeneous of degree 4, general. E.g.

S = {x4
0 + x4

1 + x4
2 + x4

3 = 0}.

(2) Complete intersections of degree (2, 3) in ℙ4:

S = {f2 = f3 = 0} ⊂ ℙ4.

Remark: There exist non-algebraic K 3 surfaces.
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K3 surfaces (2)
The second cohomology group H2(S ,ℤ) of a K 3 surface has the
structure of a lattice, i.e. it carries a non-degenerate symmetric
bilinear form (given by the intersection form). More precisely

H2(S ,ℤ) = 3U ⊕ 2E8(−1)

where

U =

(
0 1
1 0

)
(hyperbolic plane)

and

E8(−1) = non-degenerate, even, unimodular lattice of rank 8.

The second cohomology group with complex coefficients has a
Hodge decomposition

H2(S ,ℂ) = H20 ⊕ H11 ⊕ H02 (H20 = H02).

╱ ∣ ╲
(2,0)-forms (1,1)-forms (0,2)-forms
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K3 surfaces (3)

Since !S = OS it follows that

dimℂ H20 = dimℂ H0(S , !S) = dimℂ H0(S ,OS) = 1.

I.e. we have a 1-dimensional subspace

ℂ ∼= H20 ⊂ H2(S ,ℂ) ∼= ℂ22.

This inclusion carries all information on S (Torelli theorem).

LK3 = 3U + 2E8(−1) (sign(LK3) = (3, 19)).

A marking of a K 3 surface is an isomorphism

' : H2(S ,ℤ) ∼= LK3.

This defines a 1-dimensional subspace

'(ℂ⋅!S) = '(H20) ⊂ LK3 ⊗ ℂ.
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K3 surfaces (4)

With respect to the intersection form on H2(S ,ℂ) one has

(!S , !S) = 0, (!S , !S) > 0.

This leads one to define

ΩK3 = {[x ] ∈ ℙ(LK3 ⊗ ℂ); (x , x) = 0, (x , x) > 0}.

dimℂ ΩK3 = 20

Given a marking ' : H2(S ,ℤ) ∼= LK3 of a K 3 surface one defines
the period point

'(!S) = [ℂ!S ] ∈ ΩK3.
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K3 surfaces (5)

O(LK3) = {g ; g is an orthogonal transformation of LK3}.

This group acts on ΩK3.

Theorem (Torelli): The K 3 surface S can be reconstructed from
its period point. I.e. the quotient

ℳK3 = O(LK3) ∖ ΩK3

is the moduli space of K 3 surfaces.

Remark: The group action is badly behaved, e.g. the quotient
ℳK3 is not hausdorff.
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K3 surfaces (6)

The situation improves when one restricts to the algebraic case,
i.e. to polarized K 3 surfaces.

A polarized K 3 surface is a pair (S ,L ) where L is an ample line
bundle.

Instead of L it suffices to consider

h = c1(L ) ∈ H2(S ,ℤ).

The degree of L (resp. h) is

deg L = c1(L )2 = h2 = 2d > 0.

Question: How can we describe moduli of polarized K 3 surfaces
(of given degree 2d)?
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K3 surfaces (7)

If h ∈ LK3 is a primitive element with h2 = 2d , then

h⊥LK3
∼= 2U ⊕ 2E8(−1)⊕ ⟨−2d⟩ =: L2d .

As before we consider

ΩL2d
= {[x ] ∈ ℙ(L2d ⊗ ℂ); (x , x) = 0, (x , x) > 0}.

Then

▶ dim ΩL2d
= 19

▶ ΩL2d
= DL2d

∪ D′L2d

where DL2d
is a homogeneous symmetric domain of type IV.
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K3 surfaces (8)

Let
Õ(L2d) = {g ∈ O(LK3); g(h) = h}

and set
ℱ2d = Õ(L2d) ∖ ΩL2d

.

Theorem (Torelli): The quotient ℱ2d is the moduli space of
pseudo-polarized K 3 surfaces of degree 2d .
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K3 surfaces (9)

The action of Õ(L2d) on ΩL2d
is properly discontinuous. The

following holds:

▶ dimℱ2d = 19

▶ ℱ2d has only finite quotient singularities

▶ ℱ2d is quasi-projective (Baily–Borel).

There exist different compactifications of ℱ2d :

▶ ℱBB
2d : Baily–Borel compactification

▶ ℱ tor
2d : toroidal compactifications
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K3 surfaces (10)

Question: What is the Kodaira dimension of ℱ2d?

Theorem (Mukai): ℱ2d is unirational (and hence �(ℱ2d) = −∞) if
1 ≤ d ≤ 10, d = 12, 16, 17 and 19.

Theorem (Gritsenko, H., Sankaran, 2007): ℱ2d is of general type
for d > 61 and d = 46, 50, 54, 57, 58, 60.

Remark (A. Peterson): ℱ2d is also of general type for d = 52.
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Automorphic forms (1)

Recall that

ΩL2d
= {[x ] ∈ ℙ(L2d ⊗ ℂ); (x , x) = 0, (x , x) > 0} = DL2d

∪ D′L2d
.

Let

(L2d ⊗ ℂ) ∖ {0} ⊃ D ∙L2d
= affine cone over DL2d

⊂ ℙ(L2d ⊗ ℂ)

and
O+(L2d) = {g ∈ O(L2d); g(DL2d

) = DL2d
}.
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Automorphic forms (2)

Definition: Let Γ ⊂ O+(L2d) be a group of finite index. A modular
form (automorphic form) of weight k with respect to Γ and with a
character � is a holomorphic function

F : D ∙L2d
−→ ℂ

such that

(1) F (tZ ) = t−kF (Z ) (t ∈ ℂ∗)
(2) F (Z ) = �()F (Z ) ( ∈ Γ).
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Automorphic forms (3)

Fact: S19k(Õ
+

(L2d), detk) ∋ F ⇝ F ⋅(dz)
↑

suitable volume form

k∈ H0(ℱ∘2d , !
⊗k
ℱ∘2d

)

where
ℱ∘2d = ℱ2d ∖ {fixed points of Õ

+
(L2d)}.

Question: When can one extend these forms to pluricanonical
forms on a smooth projective model ℱ2d of ℱ2d?

Obstructions:

(1) elliptic obstructions (from singularities of ℱ2d)

(2) reflective obstructions (from quasi-reflections in Õ
+

(L2d))

(3) parabolic obstructions (dz picks up poles along the boundary).

We will concentrate on (3) in the sequel.
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Automorphic forms (4)

Low weight cusp form trick

Assume we have a cusp form Fa of low weight a (i.e.
a < 19 = dim ΩL2d

), i.e.

Fa ∈ Sa(Õ
+

(L2d), det"); " = 0 or 1.

Let k be even and consider

F ∈ F k
a ⋅Sk(19−a︸︷︷︸

>0

)(Õ
+

(L2d)) ⊂ S19k(Õ
+

(L2d)) = S19k(Õ
+

(L2d), detk).

Then
!F = F ⋅(dz)k

has no poles along the boundary.

Question: Construction of low weight cusp forms?
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The Borcherds form (1)

Let

L2,26 = 2U ⊕ 3E8(−1) = 2U ⊕ Λ (Λ = Leech lattice).

Then Borcherds has constructed a modular form

Φ12 : D ∙L2,26
−→ ℂ

of weight 12.

Idea: “Restrict” this form to D ∙L2d
.

Choose l ∈ E8(−1), l2 = −2d < 0. This defines embeddings

L2d = 2U ⊕ E8(−1)⊕ ⟨−2d⟩ ↪→ L2,26

resp.
ΩL2d

⊂ ΩL2,26 .
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The Borcherds form (2)

Let
Rl := {r ∈ E8(−1); r 2 = −2, (r , l) = 0}

Nl := ∣Rl ∣.

We define the “quasi-pullback” of Φ12 to D ∙L2d
by

Fl :=
Φ12(z)∏
±r∈Rl

(r , z)

∣∣∣
D ∙L2d

.

Proposition: If Nl > 0 then

0 ∕= Fl ∈ S
12+

Nl
2

(Õ
+

(L2d), det).

This gives us low weight cusp forms provided

2 ≤ Nl ≤ 12.
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The Borcherds form (3)

Question: When can we find l ∈ E8(−1) with l2 = −2d which is
orthogonal to at least 2 and at most 12 roots?

Proposition: Such l exists if

4NE7 (2d) > 28NE6 (2d) + 63ND6 (2d) (∗)

where NL(2d) is the number of representations of the integer 2d
in the lattice L.

▶ One can show that (∗) holds for d > 143.

▶ The remaining small d in the theorem can be done by a
computer search.
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Further outlook (1)

This technique can also be applied to other moduli problems.

Definition: An irreducible symplectic manifold is a compact
complex manifold X with the following properties:

(1) X is Kähler

(2) There exists a (up to scalar) unique non-degenerate 2-form
!X ∈ H0(X ,Ω2

X ) (⇒ !X = OX )

(3) X is simply connected.

Examples

(1) dim X = 2: X = S = K 3 surface

(2) X is a deformation of HilbnS

(3) X is a deformation of a generalized Kummer variety

(4) O’Grady’s sporadic examples in dimension 6 and 10.
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Further outlook (2)

In this case Torelli does not hold (in the strict form). However one
still has a finite dominant map

ℳ −→ Γ ∖ DL

↑
component of a moduli space

of polarized irreducible

symplectic manifolds

where L is a lattice of signature (2, n) and Γ is a suitable group.

General type results have been obtained in the case

X ∼def Hilb2S , split polarization (Gritsenko, H., Sankaran).

Work in progress

▶ X ∼def HilbnS , general polarization

▶ O’Grady’s 10-dimensional sporadic case.
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