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Shape optimization.
A rather general shape optimization problem.

minimize f (D) over a set of feasible geometries D

Possible scenarios:

I f (D) per se; e.g., edge detector based image segmentation
with D = Γ = ∂Ω and gI an edge detector,

f (Γ) =

∫
Γ
gI dS + ν

∫
Ω

gI dx.
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Shape optimization.
I f (D) = J(u(D),D) where u(D) solves PDE depending on D;

e.g., reduction approach to Mumford-Shah model: D = Γ,
f (D) = J(u(Γ), Γ) with

J(u, Γ) =
1

2

∫
D

(u − ud)2dx +
µ

2

∫
D\Γ
|∇u|2dx + ν

∫
Γ

1dH1.

Possible simplification: piecewise constant Mumford-Shah
model:

u =
m∑

i=1

uiχΩi
, Ωi ∩ Ωj = ∅ if i 6= j ; Ωi ⊂ D ∀i .



Shape optimization.

I f (D) = J(u(D), q(D),D) where u(D) solves PDE depending
on D.

Electrical impedance tomography.

courtesy: Dept. Physics, Univ. Kuopio

I Given: Surface measurements associated with electric currents
f on Σ.

I Find: Electrical properties (conductivity) in the interior of the
body.



Shape optimization.

Given scenarios fi (x) ∈ H−1/2(Ω) and associated measure-
ments mi ∈ L2(Σ), i = 1, . . . ,M, consider

minimize
1

2

M∑
i=1

‖ui −mi‖2
L2(Σ) + αR(q)

subject to ∇ · (q∇ui ) = 0 in H1(Ω)′,

q∂nui = fi on Σ,∫
Σ

uids = 0, i = 1, . . . ,M.

I Assumption: q is piecewise constant: q(x) =
∑m

j=1 qjχΩj (x).
I Appropriate regularization: Total variation (TV)

R(q) =

∫
Ω

|∇q| =
m∑

j=1

qj

∫
Ωj

|∇χΩj | =
m∑

j=1

qjPer(Ωj).



Issues in solver design.

I Shape and topological sensitivity: How to differentiate a
function with respect to (sufficiently regular) sets? Changes in
shape vs. changes in topology.

I How to represent geometry in a practical way (avoiding
parameterizations etc.)?

I Are there analogues of, e.g., the steepest descent,
gradient-related or Newton-type methods for minimizing a
shape functional?

I How to ”transport” geometry from iteration to iteration?

I Numerical realization?



Shape sensitivity

[Murat, Simon], [Delfour, Sokolowski, Zolesio]. Let V be
some sufficiently regular vector field. Define Tt(V )(x) = x(t)
as the solution of

dx

dt
(t) = V (t, x(t)), 0 < t < τ, x(0) = x.

Then Dt = Dt(V ) := Tt(V )(D), T0(V )(D) = D.
I Eulerian semi-derivative df of f at D.

|f (Dt)− f (D)− t · df (D; V )| = O(t)

for t ↓ 0. D

n 

I f shape diff. at D: df (D; V ) = 〈G (D),V (0)〉.
I In case D = Ω, there exists g(Γ) such that

G (Ω) = γ? (g(Γ) · n) .

(Hadamard-Zolesio structure theorem)



Shape sensitivity

I Second Eulerian semi-derivative in direction (V ,W ):

d2f (D; V ; W ) = lim
t↓0

df (Dt(W ); V )− df (D; V )

t

I f twice shape differentiable at D, if d2f (D; V ; W ) exists for
all admissible V and W , and (V ; W ) 7→ d2f (D; V ; W ) is
bilinear and continuous. Bilinear form denoted by h.

I Let H(D) ∈ (D(Rm,Rm)⊗ D(Rm,Rm))′ denote the vector
distribution associated with h, i.e.,

d2J(D; V ; W ) = 〈H(D),V ⊗W 〉 = h(V ,W ),

where (V ⊗W )ij(x , y) = Vi (x)Wj(y) for all 1 ≤ i , j ,≤ m.
Then H(D) is called the shape Hessian of f at D.



Shape sensitivity

Let D = Ω and Γ = ∂Ω.

I H has its support in Γ× Γ, i.e., ∃ a vector distribution
hΓ⊕Γ(Ω) such that for all V ,W there holds

〈hΓ⊕Γ(Ω), (γΓ(V ))⊕ (γΓ(W ) · n)〉Γ = d2f (Ω; V ; W ).

Here (γΓ(V ))⊕ (γΓ(W ) · n) is defined as the tensor product

((γΓ(V ))⊕ (γΓ(W ) · n))i (x , y) = (γΓ(Vi ))(x) ((γΓW ) · n) (y)

for x , y ∈ Γ.



Gradient related directions

I Let B(D; ·, ·) be positive-definite bilinear form. Then the
solution D(D) of

B(D; V ,D(D)) = −df (D; V ) ∀V

satisfies
〈G (D),D(D)〉 < 0

if df (Ω; V ) 6= 0; D(D) is called shape gradient related.

I Application: Preconditioning of the shape gradient flow by the
Laplace-Beltrami operator∫

Γ
∇ΓV|Γ · ∇Γd(Γ)dS = −

∫
Γ
g(Γ) · VndS ,

with Vn := (V · n)|Γ for all V ; D(Ω) = γ?(d(Γ) · n).



Line search.

I Given D compute Dt = Tt(D(D))(D) such that

f (Dt)− f (D) ≤ νt〈G (Ω),D(Ω)〉 < 0 (A)

with 0 < ν < 1.

I t-search by bisection or, more advanced, interpolation
schemes.

Theorem: For given D there always exists tD > 0 such that (A) is
satisfied, i.e., the t-search is a finite process.



Line search; cont.

Stationarity.

I Assume that tk := tDk ≥ t > 0 for all k ∈ N, and

I Dk := D(Dk) is uniformly shape gradient related

〈G k ,Dk〉 ≤ −δ‖G k‖2 ∀k

with δ > 0, G k := G (Dk), and

I {f k}, f k := f (Dk), is bounded from below.

Then f k+1 − f k ≤ −δ‖G k‖2 < 0 for all k , and, thus,

|f k+1 − f k | ↓ 0 and ‖G k‖ → 0.



Variable metric direction.

I Second Eulerian derivative.

|df (Dt(W ); V )− df (D; V )− t · d2f (D; V ,W )| = O(t).

for t ↓ 0 and for all velocity fields V ,W .

I Newton equation:

d2f (Dk ; V ,Dk) = −df (Dk ; V ) ∀V .

I More general: B(Dk ; V ,Dk) uniformly positive-def.

I Preconditioner for the negative shape gradient varies in every
iteration:

Variable metric method.



Level set method

I Choose Γ = ∂D to be the zero level set of a Lipschitz fctn
φ : Rn × R+

0 → R (e.g., signed distance fctn)
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I Requirement: φ(x(t), t) = 0 ∀x(t) ∈ Dt . Yields

φt(x(t), t) +∇xφ(x(t), t) · ẋ(t) = 0.

Note: n = ∇φ/|∇φ|. Choose ẋ(t) = F · n, F a scalar fctn.

I Particular choice of Tt by using level sets:

φt + F |∇φ| = 0, φ(0) = φk , {φk = 0} = ∂Dk .



Level set method

Extension.

I Choose F |Γk = d(Γk).

I Extension velocity:

〈∇dk
ext,∇φk〉 = 0 on R2, dk

ext|Γk = d(Γk),

with φk the signed distance to Γk .

I Note: Vdk
ext

:= dk
ext∇φk satisfies

〈Vdk
ext
,n〉 = d(Γk).



Applications.

For edge detector based image segmentation one seeks to locally
minimize the functional

f (Γ) =

∫
Γ
gI dS + ν

∫
Ω

gI dx.

Here gI is an edge detector for the edges in the original image ud .
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Applications

Utilizing standard shape sensitivity analysis we obtain

df (Γ; V ) = 〈G (Γ),V 〉 =

∫
Γ

〈(∂gI

∂n
+ gI (κ+ ν)

)
n,V

〉
dS .

The Newton-type speed function d(Γ) solves

∫
Γ

[(∂2gI

∂n2
+ (2κ+ ν)

∂gI

∂n
+ ν κ gI

)
d(Γ) Vn+ gI 〈∇Γd(Γ),∇ΓVn〉

]
= −

∫
Γ

(∂gI

∂n
+ (κ+ ν) gI

)
Vn

with Vn = (V · n)|Γ.



Applications: Algorithm.

Shape Newton-Algorithm with narrow band.

1 Initialization. Choose Γ0. Compute the initial signed distance
function φ0 such that Γ0 is its zero level set; set k = 0.
Choose a bandwidth w ∈ N, ν ∈ R.

2 Newton direction. Find zero level set Γk of φk . Solve the
modified Newton system → Newton-type direction dk .

3 Extension. Extend dk to band around Γk with bandwidth w
→ dk

ext .

4 Update. Perform a time step in the level set equation with
speed function dk

ext to update φk on the band → φ̂k+1.

5 Reinitialization. Reinitialize φ̂k+1 such that φk+1 is signed
distance function with zero level set given by the one of φ̂k+1.
Set k = k + 1 and go to (2).



Numerical Results.

Example 1

Steepest descent! Newton-type direction!



Numerical Results.

Iteration history for Newton-type direction.
k ∆tk ∆tk

CFL f k
h f k

h,r

1 0.00027 0.00014 67.71894 67.73983

2 0.00916 0.00458 63.62859 63.58714

3 0.05119 0.01462 55.69355 55.30486

4 0.07655 0.02187 45.59301 45.34222

5 0.11608 0.03317 37.06772 36.81020

6 0.16018 0.04577 28.19008 27.54977

7 0.20494 0.05856 16.41064 15.95286

8 0.31020 0.08862 9.73240 9.92598

9 0.34469 0.09848 4.01012 3.83231



Numerical Results

Comparison of Algorithms.

Newton
ν = 0
LS

gradient
ν = 1
LS

gradient
ν = 1
no LS

gradient
ν = 0
LS

# it. 9 13 31 327

LS ... line search



Numerical Results; cont.

Example 2.

Newton-type direction! Steepest descent!



Numerical Results; cont.

Example 3.

Newton-type direction!

Narrow band technique; Signed distance fctn on narrow band.

file:c:/movie_edge_kidneys.avi
file:c:/movie_band_kidneys.avi
file:c:/movie_sdf_kidneys.avi


Active contours without edges.

Given: Gray value image ud : D → R (noisy and/or blurred) with
D = (0, 1)× (0, 1).

Aim: Find denoised and deblurred approximation u to the given
data ud and a set Γ ⊂ D – the edge set of the given image ud – as
the minimizer of the Mumford-Shah functional

J(u, Γ) =

∫
D
|u − ud |2 dx +

µ

2

∫
D\Γ
|∇u|2 dx + ν

∫
Γ

1 dH1.

Here µ, ν ≥ 0, and H1 denotes the 1-dimensional Hausdorff
measure.



Active contours

I We consider

Γ = ∂Ω1 = {x ∈ D : φ(x) = 0}, Ω1 = {x ∈ D : φ(x) < 0}

with Ω1 ⊂ D open.

Ω2 = D \ Ω1 = {x ∈ D : φ(x) > 0}

I Under suitable assumptions we have

inf
(u,Γ)∈H1(D\Γ)×E

J(u, Γ) = inf
Γ∈E

min
u∈H1(D\Γ)

J(u, Γ).

E denotes the set of admissible edges.



Active contours

I Set uk = u|Ωk
for k = 1, 2.

I Note: u ∈ H1(D \ Γ) ⇔ uk ∈ H1(Ωk) for k = 1, 2.

I The solution u(Γ) = u1(Γ)χΩ1 + u2(Γ)χΩ2 to the inner
minimization is then given as the solution to the optimality
system∫

Ωk

(
uk(Γ)ϕ+ µ〈∇uk(Γ),∇ϕ〉

)
dx =

∫
Ωk

ud ϕ dx

for all ϕ ∈ H1(Ωk) and for k = 1, 2.



Active contours.

I Weak form of the Neumann problem for the Helmholtz
equation {

−µ∆uk(Γ) + u(Γ) = ud on Ωk
∂uk (Γ)
∂nk

= 0 on ∂Ωk

for k = 1, 2.



Active contours.

I Remaining shape optimization problem.

minimize

f (Γ) =
2∑

k=1

∫
Ωk

(
1

2
|uk(Γ)− ud |2 +

µ

2
|∇uk(Γ)|2

)
dx+

ν

∫
Γ

1 dH1

over Γ ∈ E .



Active contours.

I Let VF = F∇φΓ with a scalar function F .

Eulerian derivative of f :

df (Γ; VF )=

∫
Γ

(1

2

q
|u − ud |2

y
+
µ

2

q
|∇Γu(Γ)|2

y
+ νκ

)
F dH1,

where

q
|u − ud |2

y
= |u1 − ud |2 − |u2 − ud |2,

q
|∇u(Γ)|2

y
= |∇u1(Γ)|2 − |∇u2(Γ)|2

denote the jumps of |u − ud |2 and |∇u|2, respectively, across
Γ.



Shape Hessian.

I d2f (Γ; F ; G ) =∫
Γ

[
1

2

(
κ
(q
|u − ud |2

y
− µ

q
|∇Γu|2

y)
+

∂

∂n

q
|u − ud |2

y)
G

+
q

(u − ud) u′G
y

+ µ
q
〈∇u,∇u′G 〉

y
− ν∆ΓG

]
F dH1.

I The shape derivative u′G solves Helmholtz problem −µ∆u′k,G + u′k,G = 0 on Ωk

∂u′k,G
∂n1

= div Γ(G ∇Γuk) +
1

µ
(ud − uk) G on Γ,

I Shape Hessian evaluation too expensive!!!



Descent direction and PCG.

I Let B(Γk ; VF ; VG ) denote the shape Hessian or a uniformly
positive-definite approximation. A descent direction dk for f
at Γk is obtained as solution to

B(Γk ; VF ; dk) = −df (Γk ; VF ) ∀F

by means of the preconditioned conjugate gradient method,
i.e., dk satisfies

〈dk , gk〉Γ < −δ‖gk‖2
Γ.

I ⇒ allows to replace constant time-stepping (CFL-condition)
with a line search technique.



Numerical results.

Initialisation! Segmented image
15 Iterations!



Denoising.

Denoising and simultaneous segmentation.

Data! Denoised image
5 Iterations!



Denoising.

Segmentation result.



Topological derivative

I Often number of connected components (topology) unknown.

I Study sensitivity with respect to topological changes.

J(Ω) =

∫
Ω

(uΩ(x)−ud(x))2 dx

with uΩ the solution of a
PDE on Ω.



Topological derivative

J(Ω) =

∫
Ω

(uΩ(x)−ud(x))2 dx

=⇒

J(Ωδ) =

∫
Ωδ

(uΩδ
(x)−ud(x))2 dx



Topological derivative

=⇒

Topological derivative ([Eschenauer, Schumacher], [Sokolowski,
Zochowski], [Masmoudi et al.]). Let ωδ be a ball of radius δ and
center x0 ∈ Ω, δ > 0. Ωδ = Ω \ ωδ. When, for δ → 0,

J(Ωδ) = J(Ω) + ρ(δ)T (x0) + o(ρ(δ)),

T (x0) is the topological derivative at x0 and ρ(δ)→ 0, ρ(δ) > 0.



How to compute the topological derivative?

I Examples of shape functionals

J1(Ω) = |Ω|, J2(Ω) = |∂Ω|

J3(Ω) =

∫
Ω

(uΩ(x)−ud(x))2 dx , J4(Ω) =

∫
Ω
|∇uΩ(x)|2 dx

where uΩ is the solution of a PDE defined in the domain Ω.

I Examples of topological derivatives:

J1(Ω \ B(x0, δ)) = |Ω \ B(x0, δ)| = J1(Ω)− πδ2,

J2(Ω \ B(x0, δ)) = |∂Ω ∪ ∂B(x0, δ)| = J2(Ω) + 2πδ

Thus, T1(x0) = −1, ρ1(δ) = πδ2 and T2(x0) = 1, ρ2(δ) = 2πδ.



Topological derivative: example

J3(Ω) =

∫
Ω

(uΩ(x)− ud(x))2 dx,

−∆uΩ = g in Ω,

uΩ = 0 on Γ = ∂Ω.

J3(Ωδ) =

∫
Ωδ

(uΩδ
(x)− ud(x))2 dx

−∆uΩδ
= g in Ωδ,

uΩδ
= 0 on Γ,

δnuΩδ
= 0 on ∂B(x0, δ).

Topological derivative.

J3(Ωδ) = J3(Ω) + πδ2T (x0) + o(πδ2).

T (x0) = 2∇uΩ(x0) · ∇p(x0)− p(x0)g(x0)− (uΩ − ud)2(x0).

Associated adjoint problem.

−∆p = 2(u − ud) in Ω,

p = 0 on Γ.



EIT.

courtesy: Dept. Physics, Univ. Kuopio

Given fi (x) and measurements mi , i = 1, . . . ,M, consider

minimize
1

2

M∑
i=1

‖ui −mi‖2
L2(Σ) + α

2∑
j=1

qj

∫
Ωj

|∇χΩj
|

subject to ∇ · (q∇ui ) = 0 in H1(Ω)′,

q∂nui = fi on Σ,∫
Σ

uids = 0, i = 1, . . . ,M.

Note: q(x) = q1χΩ1(x) + q2χΩ2(x); Ω2 = Ω \ Ω̄1.



EIT.

Let Ωδ
2 := Ω2 \ B(x; δ). Then, for sufficiently small δ, we obtain

the expansion:

J (Ωδ
2) = J (Ω2) +

4∑
l=0

T (δ)
l (x) + O(δd) + r (δ)(x),

where r (δ)(x) denotes a remainder term. The leading term is

T (δ)
0 (x) = −δβd−1|S (d−1)

δ |∇w(x) · ∇u2(x),

where β = (q1 − q2)/(q2 + q1/(d − 1)), and w denotes the adjoint
state solving

−∆w = 0 in Ω, ∂n2w = (u2 −m) on Σ.



EIT.

The remaining terms are of higher order in δ, but are important
numerically near the boundary Σ:

T (δ)
1 (x) = δ2d β2

2(d − 1)2

∑
i ,j

∂iu2(x) ∂ju2(x)I(1)
i ,j ,

T (δ)
2 (x) = δ2(d+2) δ

2

2d2

∑
i ,j ,k,l

∂2
iju2(x) ∂2

klu2(x) I(2)
i ,j ,k,l ,

T (δ)
3 (x) = δ2d+2 βδ

(d − 1)d

∑
i ,j ,k

∂ku2(x) ∂2
iju2(x) I(12)

i ,j ,k ,

T (δ)
4 (x) =−|Σ|−1

∑
k

δdβ

d − 1
∂ku2(|x)I(λ,1)

k +
∑
i ,j=1

δd+2δ

d
∂2

iju2(x) I(λ,2)
i ,j


with δ is similar to β. I•• represent integral terms which can be
computed explicitly.



Results.

Reconstructions for 1% (upper left), 3% (upper right) and 5% (lower)
noise.

red ... original;
blue ... reconstruction;

green ... initialization.



Finally: Level set relaxation

For g ∈ Lp(Ω), with p > 1, consider the problem

minimize

∫
Ω

g u dx + J(u)

over u ∈ BV(Ω; {0, 1}) with the BV-seminorm

J(u) =

∫
Ω
|∇u|.

Covers, e.g., binary

I total variation based image denoising (ROF).

I Mumford-Shah based image segmentation (MS).



Exact relaxation

”Convexification of feasible set”. Replacing BV(Ω; {0, 1}) by
BV(Ω; [0, 1]) gives the relaxed problem

minimize

∫
Ω

g u dx + J(u)

over u ∈ BV(Ω; [0, 1]).

Theorem. Let u ∈ BV(Ω; [0, 1]) be a minimizer of the relaxed
problem. Then, for almost every t ∈ (0, 1), the function
ut ∈ BV(Ω; {0, 1}) with

ut(x) =

{
1 if u(x) > t,
0 else,

is a minimizer of the original problem (with binary constraints).



Exact relaxation

Proof ingredients:

I
∫ u(x)

0
g(x) dt =

∫ 1

0
g(x) ut(x) dt.

I Co-area formula. Let f ∈ BV(Ω) and define

St = {x ∈ Ω : f (x) > t}.

Then ∫
Ω
|∇f | =

∫ ∞
−∞

∫
Ω
|∇χSt |dt.



Exact relaxation

Proof.∫
Ω

g u dx + J(u) =

∫
Ω

∫ u(x)

0
g(x)dt dx +

∫ 1

0

∫
Ω
|∇χ{u>t}|dt

=

∫
Ω

∫ 1

0
g(x)ut(x)dt dx +

∫ 1

0
J(ut)dt

≥
∫ 1

0

(∫
Ω

g v dx + J(v)

)
dt

=

∫
Ω

g v dx + J(v)

where u solves the relaxed and v the ”binary” problem. The
inequality is due to ut ∈ BV(Ω; {0, 1}).



{ROF, MS} and projected gradients

We start by looking at the ROF-model for denoising of blocky
images.

minimize
λ

2

∫
Ω

(u − f )2dx + J(u) over u ∈ BV(Ω; {0, 1}).

I If f (x), u(x) ∈ {0, 1} then

λ

2

∫
Ω

(u − f )2(x)dx =

∫
Ω

u(x)(
λ

2
− λf (x))dx +

λ

2

∫
Ω

f (x)2dx.

I Setting g = λ
2 − λf , the ROF-minimization is equivalent to

our objective.

Movie.



{ROF, MS} and projected gradients

Mumford-Shah-based binary image segmentation.

minimize Jλ(u) = λ

∫
Ω

[u(c1 − f )2 + (1− u)(c2 − f )2] dx + J(u)

over u ∈ BV(Ω)(Ω; {0, 1}) and c1, c2 ∈ R.

I For fixed u, c1(u) and c2(u) can be computed explicitly.

I Fits into our framework with

g = λ(c1 − f )2 − λ(c2 − f )2.

I Instead of exact minimization w.r.t. u, only a few projected
TV-flow steps are performed.

I Numerical example: 256×256, 10% noise, λ = 1000.



{ROF, MS} and projected gradients

Original, iteration 5, 25, 45, 65.

Movie.


