Use Level Sets And Relax!

Michael Hintermüller

Department of Mathematics, Humboldt-University of Berlin and DFG Research Center MATHEON hint@math.hu-berlin.de

Acknowledgment: FWF under START-grant Y305 "Interfaces and Free Boundaries" & SFB F32 "Mathematical Optimization and Its Applications in Biomedical Sciences".

joint work with M. Burger, M. Kanitsar, A. Laurain, W. Ring.

イロト 不得 トイヨト イヨト

-

A rather general shape optimization problem.

minimize $f(\mathcal{D})$ over a set of feasible geometries \mathcal{D}

Possible scenarios:

► f(D) per se; e.g., edge detector based image segmentation with $D = \Gamma = \partial \Omega$ and g_I an edge detector,

$$f(\Gamma) = \int_{\Gamma} g_I \, dS + \nu \int_{\Omega} g_I \, d\mathbf{x}.$$

Edge detector

f(D) = J(u(D), D) where u(D) solves PDE depending on D;
 e.g., reduction approach to Mumford-Shah model: D = Γ,
 f(D) = J(u(Γ), Γ) with

$$J(u,\Gamma) = \frac{1}{2} \int_D (u-u_d)^2 d\mathbf{x} + \frac{\mu}{2} \int_{D\setminus\Gamma} |\nabla u|^2 d\mathbf{x} + \nu \int_{\Gamma} 1 d\mathcal{H}_1.$$

Possible simplification: piecewise constant Mumford-Shah model:

$$u = \sum_{i=1}^{m} u_i \chi_{\Omega_i}, \quad \Omega_i \cap \Omega_j = \emptyset \text{ if } i \neq j; \quad \Omega_i \subset D \,\forall i.$$

f(D) = *J*(*u*(D), *q*(D), D) where *u*(D) solves PDE depending on D.

Electrical impedance tomography.

courtesy: Dept. Physics, Univ. Kuopio

- Given: Surface measurements associated with electric currents f on Σ.
- Find: Electrical properties (conductivity) in the interior of the body.

Given scenarios $f_i(\mathbf{x}) \in H^{-1/2}(\Omega)$ and associated measurements $m_i \in L^2(\Sigma)$, $i = 1, \ldots, M$, consider

minimize
$$\frac{1}{2} \sum_{i=1}^{M} \|u_i - m_i\|_{L^2(\Sigma)}^2 + \alpha R(q)$$

subject to $\nabla \cdot (q \nabla u_i) = 0$ in $H^1(\Omega)'$,
 $q \partial_n u_i = f_i$ on Σ ,
 $\int_{\Sigma} u_i ds = 0, \quad i = 1, \dots, M.$

Assumption: q is piecewise constant: q(x) = ∑_{j=1}^m q_j χ_{Ω_j}(x).
 Appropriate regularization: Total variation (TV)

$$R(q) = \int_{\Omega} |
abla q| = \sum_{j=1}^m q_j \int_{\Omega_j} |
abla \chi_{\Omega_j}| = \sum_{j=1}^m q_j \operatorname{Per}(\Omega_j).$$

Issues in solver design.

- Shape and topological sensitivity: How to differentiate a function with respect to (sufficiently regular) sets? Changes in shape vs. changes in topology.
- How to represent geometry in a practical way (avoiding parameterizations etc.)?
- Are there analogues of, e.g., the steepest descent, gradient-related or Newton-type methods for minimizing a shape functional?
- How to "transport" geometry from iteration to iteration?
- Numerical realization?

Shape sensitivity

[Murat, Simon], [Delfour, Sokolowski, Zolesio]. Let V be some sufficiently regular vector field. Define $T_t(V)(\mathbf{x}) = \mathbf{x}(t)$ as the solution of

 $\frac{d\mathbf{x}}{dt}(t) = V(t, \mathbf{x}(t)), \quad 0 < t < \tau, \quad \mathbf{x}(0) = \mathbf{x}.$ Then $\mathcal{D}_t = \mathcal{D}_t(V) := T_t(V)(\mathcal{D}), \ T_0(V)(\mathcal{D}) = \mathcal{D}.$ $\models \text{ Eulerian semi-derivative } df \text{ of } f \text{ at } \mathcal{D}.$ $|f(\mathcal{D}_t) - f(\mathcal{D}) - t \cdot df(\mathcal{D}; V)| = o(t)$ for $t \downarrow 0.$

- f shape diff. at \mathcal{D} : $df(\mathcal{D}; V) = \langle G(\mathcal{D}), V(0) \rangle$.
- In case $\mathcal{D} = \Omega$, there exists $g(\Gamma)$ such that

$$G(\Omega) = \gamma^{\star} \left(\mathbf{g}(\Gamma) \cdot \mathbf{n} \right).$$

(日) (四) (日) (日) (日) (日)

(Hadamard-Zolesio structure theorem)

Shape sensitivity

Second Eulerian semi-derivative in direction (V, W):

$$d^{2}f(\mathcal{D}; V; W) = \lim_{t \downarrow 0} \frac{df(\mathcal{D}_{t}(W); V) - df(\mathcal{D}; V)}{t}$$

- F twice shape differentiable at D, if d²f(D; V; W) exists for all admissible V and W, and (V; W) → d²f(D; V; W) is bilinear and continuous. Bilinear form denoted by h.
- Let H(D) ∈ (D(ℝ^m, ℝ^m) ⊗ D(ℝ^m, ℝ^m))' denote the vector distribution associated with h, i.e.,

$$d^2 J(\mathcal{D}; V; W) = \langle H(\mathcal{D}), V \otimes W \rangle = h(V, W),$$

where $(V \otimes W)_{ij}(x, y) = V_i(x)W_j(y)$ for all $1 \le i, j, \le m$. Then $H(\mathcal{D})$ is called the shape Hessian of f at \mathcal{D} .

Shape sensitivity

Let $\mathcal{D} = \Omega$ and $\Gamma = \partial \Omega$.

H has its support in Γ × Γ, i.e., ∃ a vector distribution h_{Γ⊕Γ}(Ω) such that for all V, W there holds

 $\langle h_{\Gamma\oplus\Gamma}(\Omega), (\gamma_{\Gamma}(V))\oplus (\gamma_{\Gamma}(W)\cdot\mathbf{n})\rangle_{\Gamma} = d^{2}f(\Omega; V; W).$

Here $(\gamma_{\Gamma}(V)) \oplus (\gamma_{\Gamma}(W) \cdot n)$ is defined as the tensor product

 $((\gamma_{\Gamma}(V)) \oplus (\gamma_{\Gamma}(W) \cdot \mathbf{n}))_{i}(x, y) = (\gamma_{\Gamma}(V_{i}))(x) ((\gamma_{\Gamma}W) \cdot \mathbf{n})(y)$ for $x, y \in \Gamma$.

Gradient related directions

Let B(D; ·, ·) be positive-definite bilinear form. Then the solution D(D) of

$$B(\mathcal{D}; V, D(\mathcal{D})) = -df(\mathcal{D}; V) \quad \forall V$$

satisfies

 $\langle G(\mathcal{D}), D(\mathcal{D}) \rangle < 0$

if $df(\Omega; V) \neq 0$; D(D) is called shape gradient related.

 Application: Preconditioning of the shape gradient flow by the Laplace-Beltrami operator

$$\int_{\Gamma} \nabla_{\Gamma} V_{|\Gamma} \cdot \nabla_{\Gamma} d(\Gamma) dS = - \int_{\Gamma} g(\Gamma) \cdot V_n dS,$$

with $V_n := (V \cdot \mathbf{n})|_{\Gamma}$ for all V; $D(\Omega) = \gamma^*(d(\Gamma) \cdot \mathbf{n})$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Line search.

• Given \mathcal{D} compute $\mathcal{D}_t = T_t(\mathcal{D}(\mathcal{D}))(\mathcal{D})$ such that

$$f(\mathcal{D}_t) - f(\mathcal{D}) \le \nu t \langle G(\Omega), D(\Omega) \rangle < 0$$
 (A)

with $0 < \nu < 1$.

 t-search by bisection or, more advanced, interpolation schemes.

Theorem: For given D there always exists $t_D > 0$ such that (A) is satisfied, i.e., the t-search is a finite process.

Line search; cont.

Stationarity.

Assume that t^k := t_{D^k} ≥ t > 0 for all k ∈ N, and
 D^k := D(D^k) is uniformly shape gradient related

 $\langle G^k, D^k \rangle \leq -\delta \|G^k\|^2 \quad \forall k$

with $\delta > 0$, $G^k := G(\mathcal{D}^k)$, and $\blacktriangleright \{f^k\}, f^k := f(\mathcal{D}^k)$, is bounded from below. Then $f^{k+1} - f^k \le -\delta ||G^k||^2 < 0$ for all k, and, thus,

 $|f^{k+1} - f^k| \downarrow 0$ and $||G^k|| \to 0$.

Variable metric direction.

Second Eulerian derivative.

$$|df(\mathcal{D}_t(W); V) - df(\mathcal{D}; V) - t \cdot d^2 f(\mathcal{D}; V, W)| = o(t).$$

for $t \downarrow 0$ and for all velocity fields V, W.

Newton equation:

$$d^2f(\mathcal{D}^k; V, D^k) = -df(\mathcal{D}^k; V) \quad \forall V.$$

- More general: $B(\mathcal{D}^k; V, D^k)$ uniformly positive-def.
- Preconditioner for the negative shape gradient varies in every iteration:

Variable metric method.

Level set method

• Choose $\Gamma = \partial \mathcal{D}$ to be the zero level set of a Lipschitz fctn $\phi : \mathbb{R}^n \times \mathbb{R}^+_0 \to \mathbb{R}$ (e.g., signed distance fctn)

▶ Requirement: $\phi(\mathbf{x}(t), t) = 0 \quad \forall \mathbf{x}(t) \in \mathcal{D}_t$. Yields

$$\phi_t(\mathbf{x}(t),t) + \nabla_x \phi(\mathbf{x}(t),t) \cdot \dot{\mathbf{x}}(t) = 0$$

Note: $\mathbf{n} = \nabla \phi / |\nabla \phi|$. Choose $\dot{\mathbf{x}}(t) = F \cdot \mathbf{n}$, F a scalar fctn. • Particular choice of T_t by using level sets:

$$\phi_t + F|\nabla \phi| = 0, \quad \phi(0) = \phi^k, \{\phi^k = 0\} = \partial \mathcal{D}^k.$$

Level set method

Extension.

- Choose $F|_{\Gamma^k} = d(\Gamma^k)$.
- Extension velocity:

$$\langle
abla d_{ extsf{ext}}^k,
abla \phi^k
angle = 0 extsf{ on } \mathbb{R}^2, \quad d_{ extsf{ext}}^k|_{\Gamma^k} = d(\Gamma^k),$$

with ϕ^k the signed distance to Γ^k .

▶ Note:
$$V_{d_{\text{ext}}^k} := d_{\text{ext}}^k \nabla \phi^k$$
 satisfies

$$\langle V_{d_{\text{ext}}^k}, \mathbf{n} \rangle = d(\Gamma^k).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Applications.

For edge detector based image segmentation one seeks to locally minimize the functional

$$f(\Gamma) = \int_{\Gamma} g_{I} \, dS + \nu \int_{\Omega} g_{I} \, d\mathbf{x}.$$

Here g_l is an edge detector for the edges in the original image u_d .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Applications

Utilizing standard shape sensitivity analysis we obtain

$$df(\Gamma; V) = \langle G(\Gamma), V \rangle = \int_{\Gamma} \left\langle \left(\frac{\partial g_I}{\partial n} + g_I \left(\kappa + \nu \right) \right) \mathbf{n}, V \right\rangle dS.$$

The Newton-type speed function $d(\Gamma)$ solves

$$\int_{\Gamma} \left[\left(\frac{\partial^2 g_I}{\partial n^2} + (2\kappa + \nu) \frac{\partial g_I}{\partial n} + \nu \kappa g_I \right) d(\Gamma) V_n + g_I \langle \nabla_{\Gamma} d(\Gamma), \nabla_{\Gamma} V_n \rangle \right]$$
$$= -\int_{\Gamma} \left(\frac{\partial g_I}{\partial n} + (\kappa + \nu) g_I \right) V_n$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with $V_n = (V \cdot \mathbf{n})_{|\Gamma}$.

Applications: Algorithm.

Shape Newton-Algorithm with narrow band.

- 1 Initialization. Choose Γ_0 . Compute the initial signed distance function ϕ^0 such that Γ_0 is its zero level set; set k = 0. Choose a bandwidth $w \in \mathbb{N}, v \in \mathbb{R}$.
- 2 **Newton direction.** Find zero level set Γ_k of ϕ^k . Solve the modified Newton system \rightarrow Newton-type direction d^k .
- 3 **Extension.** Extend d^k to band around Γ_k with bandwidth $w \rightarrow d_{ext}^k$.
- 4 **Update.** Perform a time step in the level set equation with speed function d_{ext}^k to update ϕ^k on the band $\rightarrow \hat{\phi}^{k+1}$.
- 5 Reinitialization. Reinitialize φ̂^{k+1} such that φ^{k+1} is signed distance function with zero level set given by the one of φ̂^{k+1}. Set k = k + 1 and go to (2).

(日) (同) (三) (三) (三) (○) (○)

Numerical Results.

Example 1

Steepest descent!

Newton-type direction!

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Numerical Results.

Iteration history for Newton-type direction.

k	Δt^k	Δt_{CFL}^k	f_h^k	$f_{h,r}^k$
1	0.00027	0.00014	67.71894	67.73983
2	0.00916	0.00458	63.62859	63.58714
3	0.05119	0.01462	55.69355	55.30486
4	0.07655	0.02187	45.59301	45.34222
5	0.11608	0.03317	37.06772	36.81020
6	0.16018	0.04577	28.19008	27.54977
7	0.20494	0.05856	16.41064	15.95286
8	0.31020	0.08862	9.73240	9.92598
9	0.34469	0.09848	4.01012	3.83231

Comparison of Algorithms.

	Newton	gradient	gradient	gradient
	u = 0	u = 1	u = 1	u = 0
	LS	LS	no LS	LS
# it.	9	13	31	327

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 $\mathsf{LS}\ ...\ \mathsf{line}\ \mathsf{search}$

Numerical Results; cont.

Example 2.

Numerical Results; cont.

Example 3.

Newton-type direction!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Narrow band technique; Signed distance fctn on narrow band.

Active contours without edges.

Given: Gray value image $u_d: D \to \mathbb{R}$ (noisy and/or blurred) with $D = (0,1) \times (0,1)$.

Aim: Find denoised and deblurred approximation u to the given data u_d and a set $\Gamma \subset D$ – the *edge set* of the given image u_d – as the minimizer of the Mumford-Shah functional

$$J(u,\Gamma) = \int_D |u-u_d|^2 \, d\mathbf{x} + rac{\mu}{2} \int_{D\setminus\Gamma} |
abla u|^2 \, d\mathbf{x} +
u \int_{\Gamma} 1 \, d\mathcal{H}_1.$$

Here $\mu, \nu \geq$ 0, and \mathcal{H}_1 denotes the 1-dimensional Hausdorff measure.

Active contours

We consider

 $\mathsf{\Gamma} = \partial \Omega_1 = \{ \mathbf{x} \in D : \phi(\mathbf{x}) = \mathbf{0} \}, \quad \Omega_1 = \{ \mathbf{x} \in D : \phi(\mathbf{x}) < \mathbf{0} \}$

with $\Omega_1 \subset D$ open.

$$\Omega_2 = D \setminus \overline{\Omega_1} = \{ \mathbf{x} \in D : \phi(\mathbf{x}) > 0 \}$$

Under suitable assumptions we have

$$\inf_{(u,\Gamma)\in H^1(D\setminus\Gamma)\times\mathcal{E}}J(u,\Gamma)=\inf_{\Gamma\in\mathcal{E}}\min_{u\in H^1(D\setminus\Gamma)}J(u,\Gamma).$$

 $\ensuremath{\mathcal{E}}$ denotes the set of admissible edges.

Active contours

• Set
$$u_k = u|_{\Omega_k}$$
 for $k = 1, 2$.

► Note: $u \in H^1(D \setminus \Gamma) \Leftrightarrow u_k \in H^1(\Omega_k)$ for k = 1, 2.

The solution u(Γ) = u₁(Γ)χ_{Ω1} + u₂(Γ)χ_{Ω2} to the inner minimization is then given as the solution to the optimality system

$$\int_{\Omega_k} \left(u_k(\Gamma) \varphi + \mu \langle \nabla u_k(\Gamma), \nabla \varphi \rangle \right) d\mathbf{x} = \int_{\Omega_k} u_d \varphi \, d\mathbf{x}$$

for all $\varphi \in H^1(\Omega_k)$ and for k = 1, 2.

Active contours.

 Weak form of the Neumann problem for the Helmholtz equation

$$-\mu\Delta u_k(\Gamma) + u(\Gamma) = u_d \text{ on } \Omega_k$$
$$\frac{\partial u_k(\Gamma)}{\partial n_k} = 0 \text{ on } \partial \Omega_k$$

(ロ)、(型)、(E)、(E)、 E) の(の)

for k = 1, 2.

Active contours.

Remaining shape optimization problem.

minimize

$$f(\Gamma) = \sum_{k=1}^{2} \int_{\Omega_{k}} \left(\frac{1}{2}|u_{k}(\Gamma) - u_{d}|^{2} + \frac{\mu}{2}|\nabla u_{k}(\Gamma)|^{2}\right) d\mathbf{x} + \frac{\nu}{\int_{\Gamma} 1 d\mathcal{H}_{1}}$$
over $\Gamma \in \mathcal{E}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Active contours.

• Let $V_F = F \nabla \phi_{\Gamma}$ with a scalar function F.

Eulerian derivative of f:

$$df(\Gamma; V_F) = \int_{\Gamma} \left(\frac{1}{2} \left[\left| u - u_d \right|^2 \right] + \frac{\mu}{2} \left[\left| \nabla_{\Gamma} u(\Gamma) \right|^2 \right] + \nu \kappa \right) F \, d\mathcal{H}_1,$$

where

$$\begin{bmatrix} |u - u_d|^2 \end{bmatrix} = |u_1 - u_d|^2 - |u_2 - u_d|^2, \\ \begin{bmatrix} |\nabla u(\Gamma)|^2 \end{bmatrix} = |\nabla u_1(\Gamma)|^2 - |\nabla u_2(\Gamma)|^2$$

denote the jumps of $|u - u_d|^2$ and $|\nabla u|^2$, respectively, across Γ .

Shape Hessian.

$$d^{2}f(\Gamma; F; G) = \int_{\Gamma} \left[\frac{1}{2} \left(\kappa \left(\left[|u - u_{d}|^{2} \right] - \mu \left[|\nabla_{\Gamma} u|^{2} \right] \right) + \frac{\partial}{\partial n} \left[|u - u_{d}|^{2} \right] \right) G \right]$$
$$+ \left[\left((u - u_{d}) u_{G}' \right] + \mu \left[\langle \nabla u, \nabla u_{G}' \rangle \right] - \nu \Delta_{\Gamma} G \right] F d\mathcal{H}_{1}.$$

• The shape derivative u'_G solves Helmholtz problem

$$\begin{cases} -\mu \Delta u'_{k,G} + u'_{k,G} = 0 \text{ on } \Omega_k \\ \frac{\partial u'_{k,G}}{\partial n_1} = \operatorname{div}_{\Gamma}(G \nabla_{\Gamma} u_k) + \frac{1}{\mu}(u_d - u_k) G \text{ on } \Gamma, \end{cases}$$

Shape Hessian evaluation too expensive!!!

Descent direction and PCG.

Let B(Γ_k; V_F; V_G) denote the shape Hessian or a uniformly positive-definite approximation. A descent direction d^k for f at Γ_k is obtained as solution to

$B(\Gamma_k; V_F; d^k) = -df(\Gamma_k; V_F) \quad \forall F$

by means of the preconditioned conjugate gradient method, i.e., \boldsymbol{d}^k satisfies

$$\langle d^k, g^k \rangle_{\Gamma} < -\delta \|g^k\|_{\Gamma}^2.$$

➤ ⇒ allows to replace constant time-stepping (CFL-condition) with a line search technique.

Numerical results.

Initialisation!

Segmented image 15 Iterations!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Denoising.

Denoising and simultaneous segmentation.

Denoised image

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

5 Iterations!

Denoising.

Segmentation result.

・ロト ・四ト ・ヨト ・ヨト 三日

Topological derivative

Often number of connected components (topology) unknown.

Study sensitivity with respect to topological changes.

$$J(\Omega) = \int_{\Omega} (u_{\Omega}(\mathbf{x}) - u_{d}(\mathbf{x}))^{2} d\mathbf{x}$$

with u_{Ω} the solution of a PDE on Ω .

Topological derivative

$$J(\Omega) = \int_{\Omega} (u_{\Omega}(\mathbf{x}) - u_d(\mathbf{x}))^2 \, dx$$

$$J(\Omega_{\delta}) = \int_{\Omega_{\delta}} (u_{\Omega_{\delta}}(\mathbf{x}) - u_d(\mathbf{x}))^2 \, d\mathbf{x}$$

Topological derivative

Topological derivative ([Eschenauer, Schumacher], [Sokolowski, Zochowski], [Masmoudi et al.]). Let ω_{δ} be a ball of radius δ and center $\mathbf{x}_0 \in \Omega$, $\delta > 0$. $\Omega_{\delta} = \Omega \setminus \omega_{\delta}$. When, for $\delta \to 0$,

$$J(\Omega_{\delta}) = J(\Omega) + \rho(\delta)\mathcal{T}(\mathbf{x}_0) + o(\rho(\delta)),$$

 $\mathcal{T}(\mathbf{x}_0)$ is the topological derivative at \mathbf{x}_0 and $\rho(\delta) \to 0$, $\rho(\delta) > 0$.

How to compute the topological derivative?

Examples of shape functionals

$$J_1(\Omega) = |\Omega|, \qquad J_2(\Omega) = |\partial \Omega|$$
$$J_3(\Omega) = \int_{\Omega} (u_{\Omega}(\mathbf{x}) - u_d(\mathbf{x}))^2 dx, \qquad J_4(\Omega) = \int_{\Omega} |\nabla u_{\Omega}(\mathbf{x})|^2 d\mathbf{x}$$
where u_{Ω} is the solution of a PDE defined in the domain Ω .

Examples of topological derivatives:

$$J_1(\Omega \setminus B(\mathbf{x}_0, \delta)) = |\Omega \setminus B(\mathbf{x}_0, \delta)| = J_1(\Omega) - \pi \delta^2,$$

$$J_2(\Omega \setminus B(\mathbf{x}_0, \delta)) = |\partial \Omega \cup \partial B(\mathbf{x}_0, \delta)| = J_2(\Omega) + 2\pi \delta$$

Thus, $\mathcal{T}_1(\mathbf{x}_0) = -1$, $\rho_1(\delta) = \pi \delta^2$ and $\mathcal{T}_2(\mathbf{x}_0) = 1$, $\rho_2(\delta) = 2\pi \delta$.

Topological derivative: example

$$J_3(\Omega) = \int_{\Omega} (u_{\Omega}(\mathbf{x}) - u_d(\mathbf{x}))^2 \, d\mathbf{x}, \qquad J_3(\Omega_{\delta}) = \int_{\Omega_{\delta}} (u_{\Omega_{\delta}}(\mathbf{x}) - u_d(\mathbf{x}))^2 \, d\mathbf{x}$$

$$\begin{aligned} -\Delta u_{\Omega} &= g \text{ in } \Omega, \\ u_{\Omega} &= 0 \text{ on } \Gamma = \partial \Omega. \end{aligned} \qquad \begin{aligned} -\Delta u_{\Omega_{\delta}} &= g \text{ in } \Omega_{\delta}, \\ u_{\Omega_{\delta}} &= 0 \text{ on } \Gamma, \\ \delta_{n} u_{\Omega_{\delta}} &= 0 \text{ on } \partial B(\mathbf{x}_{0}, \delta). \end{aligned}$$

Topological derivative.

$$J_3(\Omega_{\delta}) = J_3(\Omega) + \pi \delta^2 \mathcal{T}(\mathbf{x}_0) + o(\pi \delta^2).$$
$$\mathcal{T}(\mathbf{x}_0) = 2\nabla u_{\Omega}(\mathbf{x}_0) \cdot \nabla p(\mathbf{x}_0) - p(\mathbf{x}_0)g(\mathbf{x}_0) - (u_{\Omega} - u_d)^2(\mathbf{x}_0).$$

Associated adjoint problem.

$$\begin{aligned} -\Delta p &= 2(u-u_d) \text{ in } \Omega, \\ p &= 0 \text{ on } \Gamma. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

courtesy: Dept. Physics, Univ. Kuopio

Given $f_i(\mathbf{x})$ and measurements m_i , i = 1, ..., M, consider

minimize
$$\frac{1}{2} \sum_{i=1}^{M} \|u_i - m_i\|_{L^2(\Sigma)}^2 + \alpha \sum_{j=1}^{2} q_j \int_{\Omega_j} |\nabla \chi_{\Omega_j}|$$
subject to $\nabla \cdot (q \nabla u_i) = 0$ in $H^1(\Omega)'$,
 $q \partial_n u_i = f_i$ on Σ ,
 $\int_{\Sigma} u_i ds = 0, \quad i = 1, \dots, M.$

Note: $q(\mathbf{x}) = q_1 \chi_{\Omega_1}(\mathbf{x}) + q_2 \chi_{\Omega_2}(\mathbf{x}); \ \Omega_2 = \Omega \setminus \overline{\Omega}_1.$

EIT.

Let $\Omega_2^{\delta} := \Omega_2 \setminus B(\mathbf{x}; \delta)$. Then, for sufficiently small δ , we obtain the expansion:

$$\mathcal{J}(\Omega_2^{\delta}) = \mathcal{J}(\Omega_2) + \sum_{l=0}^4 \mathcal{T}_l^{(\delta)}(\mathbf{x}) + \mathcal{O}(\delta^d) + r^{(\delta)}(\mathbf{x}),$$

where $r^{(\delta)}(\mathbf{x})$ denotes a remainder term. The leading term is

$$\mathcal{T}_0^{(\delta)}(\mathbf{x}) = -\deltaeta d^{-1} |S_\delta^{(d-1)}|
abla w(\mathbf{x}) \cdot
abla u_2(\mathbf{x}),$$

where $\beta = (q_1 - q_2)/(q_2 + q_1/(d-1))$, and w denotes the adjoint state solving

$$-\Delta w = 0$$
 in Ω , $\partial_{n_2} w = (u_2 - m)$ on Σ .

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ∽ ⊙ < ⊙

EIT.

The remaining terms are of higher order in δ , but are important numerically near the boundary Σ :

$$\begin{split} \mathcal{T}_{1}^{(\delta)}(\mathbf{x}) &= \delta^{2d} \frac{\beta^{2}}{2(d-1)^{2}} \sum_{i,j} \partial_{i} u_{2}(\mathbf{x}) \partial_{j} u_{2}(\mathbf{x}) \mathcal{I}_{i,j}^{(1)}, \\ \mathcal{T}_{2}^{(\delta)}(\mathbf{x}) &= \delta^{2(d+2)} \frac{\delta^{2}}{2d^{2}} \sum_{i,j,k,l} \partial_{ij}^{2} u_{2}(\mathbf{x}) \partial_{kl}^{2} u_{2}(\mathbf{x}) \mathcal{I}_{i,j,k,l}^{(2)}, \\ \mathcal{T}_{3}^{(\delta)}(\mathbf{x}) &= \delta^{2d+2} \frac{\beta\delta}{(d-1)d} \sum_{i,j,k} \partial_{k} u_{2}(\mathbf{x}) \partial_{ij}^{2} u_{2}(\mathbf{x}) \mathcal{I}_{i,j,k}^{(12)}, \\ \mathcal{T}_{4}^{(\delta)}(\mathbf{x}) &= -|\Sigma|^{-1} \Biggl(\sum_{k} \frac{\delta^{d}\beta}{d-1} \partial_{k} u_{2}(|x) \mathcal{I}_{k}^{(\lambda,1)} + \sum_{i,j=1} \frac{\delta^{d+2}\delta}{d} \partial_{ij}^{2} u_{2}(\mathbf{x}) \mathcal{I}_{i,j}^{(\lambda,2)} \Biggr) \end{split}$$

with δ is similar to $\beta.$ $\mathcal{I}_{\bullet}^{\bullet}$ represent integral terms which can be computed explicitly.

Results.

Reconstructions for 1% (upper left), 3% (upper right) and 5% (lower) noise.

Sac

Finally: Level set relaxation

For $g \in L^p(\Omega)$, with p > 1, consider the problem

minimize
$$\int_{\Omega} g \, u \, d\mathbf{x} + J(u)$$

over $u \in BV(\Omega; \{0, 1\})$ with the BV-seminorm

$$J(u)=\int_{\Omega}|\nabla u|.$$

Covers, e.g., binary

- total variation based image denoising (ROF).
- Mumford-Shah based image segmentation (MS).

Exact relaxation

"Convexification of feasible set". Replacing BV(Ω ; {0,1}) by BV(Ω ; [0,1]) gives the relaxed problem

minimize
$$\int_{\Omega} g \, u \, d\mathbf{x} + J(u)$$

over $u \in BV(\Omega; [0, 1])$.

Theorem. Let $u \in BV(\Omega; [0, 1])$ be a minimizer of the relaxed problem. Then, for almost every $t \in (0, 1)$, the function $u^t \in BV(\Omega; \{0, 1\})$ with

$$u^t(\mathbf{x}) = \begin{cases} 1 & \text{if } u(\mathbf{x}) > t, \\ 0 & \text{else,} \end{cases}$$

is a minimizer of the original problem (with binary constraints).

Exact relaxation

Proof ingredients:

• Co-area formula. Let $f \in BV(\Omega)$ and define

$$S_t = \{\mathbf{x} \in \Omega : f(\mathbf{x}) > t\}.$$

Then

$$\int_{\Omega} |\nabla f| = \int_{-\infty}^{\infty} \int_{\Omega} |\nabla \chi_{S_t}| dt.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Exact relaxation

Proof.

$$\int_{\Omega} g \, u \, d\mathbf{x} + J(u) = \int_{\Omega} \int_{0}^{u(\mathbf{x})} g(\mathbf{x}) dt \, d\mathbf{x} + \int_{0}^{1} \int_{\Omega} |\nabla \chi_{\{u>t\}}| dt$$
$$= \int_{\Omega} \int_{0}^{1} g(\mathbf{x}) u^{t}(\mathbf{x}) dt \, d\mathbf{x} + \int_{0}^{1} J(u^{t}) dt$$
$$\geq \int_{0}^{1} \left(\int_{\Omega} g \, v \, d\mathbf{x} + J(v) \right) dt$$
$$= \int_{\Omega} g \, v \, d\mathbf{x} + J(v)$$

where *u* solves the relaxed and *v* the "binary" problem. The inequality is due to $u^t \in BV(\Omega; \{0, 1\})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

{ROF, MS} and projected gradients

We start by looking at the ROF-model for denoising of blocky images.

minimize
$$\frac{\lambda}{2} \int_{\Omega} (u-f)^2 d\mathbf{x} + J(u)$$
 over $u \in \mathsf{BV}(\Omega; \{0,1\}).$

• If
$$f(\mathbf{x}), u(\mathbf{x}) \in \{0, 1\}$$
 then

$$\frac{\lambda}{2} \int_{\Omega} (u - f)^2(\mathbf{x}) d\mathbf{x} = \int_{\Omega} u(\mathbf{x}) (\frac{\lambda}{2} - \lambda f(\mathbf{x})) d\mathbf{x} + \frac{\lambda}{2} \int_{\Omega} f(\mathbf{x})^2 d\mathbf{x}.$$

Setting $g = \frac{\lambda}{2} - \lambda f$, the ROF-minimization is equivalent to our objective.

Movie.

{ROF, MS} and projected gradients

Mumford-Shah-based binary image segmentation.

minimize
$$J_{\lambda}(u) = \lambda \int_{\Omega} [u(c_1 - f)^2 + (1 - u)(c_2 - f)^2] d\mathbf{x} + J(u)$$

over $u \in \mathsf{BV}(\Omega)(\Omega; \{0,1\})$ and $c_1, c_2 \in \mathbb{R}$.

For fixed u, $c_1(u)$ and $c_2(u)$ can be computed explicitly.

Fits into our framework with

$$g = \lambda(c_1 - f)^2 - \lambda(c_2 - f)^2.$$

- Instead of exact minimization w.r.t. u, only a few projected TV-flow steps are performed.
- Numerical example: 256×256, 10% noise, $\lambda = 1000$.

$\{\mathsf{ROF},\,\mathsf{MS}\}$ and projected gradients

Original, iteration 5, 25, 45, 65.

(日) (同) (日) (日)

э

Movie.