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Donsker�s invariance principle

Let (ξ i ) be an IID sequence of zero-mean, unit-variance random
variables. [Donsker �52] shows that the rescaled,
piecewise-linearly-connected, random-walk

W (n)
t =

1
n1/2

�
ξ1 + � � �+ ξ [tn] + (nt � [nt]) ξ [nt ]+1

�
converges weakly in the space of continuous functions on [0, 1].

Limit is a probability measure on C [0, 1] , called Wiener measure W.

Brownian motion (BM) (Bt ) is a stochastic process with law W .

Straight-forward extension to Rd -valued case

In particular, a d-dimensional Brownian motion is just an ensemble of
d independent Brownian motions, say

Bt =
�
B1t , . . . ,Bdt

�
.
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Brownian motion: alternative characterizations

(i): continuous martingale such that
�
B2t � t

�
is also a martingale

(ii): continuous 0-mean Gaussian process with covariance

E (BsBt ) = min (s, t) 8s, t 2 [0, 1]

(iii): Markov process with generator L = 1
2

∂2

∂x 2 in the sense that

E [f (x + Bt )]� x
t

! Lf =
1
2
f 00 8f nice

Again, straight-forward extension to Rd -valued case
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Itô integration

Fact: Typical sample paths of Brownian motion, t 7! Bt (ω), have
in�nite variation on every interval.

How to de�ne integration against Brownian motion? Itô�s brilliant
idea: with some help and intuition from martingale theory,Z 1

0
f (t,ω) dBt (ω)

can be de�ned for reasonable non-anticipating f : start with simple
integrands and complete with isometry

E

"�Z 1

0
f (t,ω) dBt (ω)

�2#
= E

�Z 1

0
f 2 (t,ω) dt

�
.

Example:
R t
0 BsdBs =

1
2

�
B2t � t

�
... 2nd order calculus!

Fact: Itô-integrals have left-point Riemann-sum approximations.
De�ne Stratonovich-integration via mid-point Riemann-sum
approximations =)

R t
0 Bs∂Bs =

1
2B

2
t (1st order calculus!)
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Stochastic di¤erential equations

Let B be a d-dimensional Brownian motion.

Let V0, . . . ,Vd be a collection of nice vector �elds on Re

A solution (process) y = yt (ω) to

dy = V0 (y) dt +
d

∑
i=1
Vi (y) ∂B i

is, by de�nition, a solution to corresponding integral equation.

At the price of modifying the drift vector �eld V0 we can switch to Itô
formulation (∂B ! dB)

Existence, uniqueness by �xpoint arguments.

For simplicity only: from here on V0 = 0.
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The Doss-Sussman approach

Let B be a d-dimensional Brownian motion, d = 1.

Let V be a nice vector �eld on Re

Aim: �nd solution to SDE

dy = V (y) ∂dB.

Let
�
etV
�
be the solution �ow to the ODE ż = V (z) . Then

y (t,ω) := eBt (ω)V y0

is the SDE solution. Proof: First order calculus.

This is an ODE solution method for SDEs.

Bene�t: solution depends in a robust way on B and y0.

A drift V0(y)dt can be incorporated (�ow decomposition)

... but this method fails when d > 1.
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More on ODEs: Euler estimates

So far, we have been interested in stochastic di¤erential equations of
the type

dyt =
d

∑
i=1
Vi (yt ) ∂B it

Let us now look at such di¤erential equations when B is replaced by
some path x 2 C 1

�
[0, 1] ,Rd

�
; that is

(�) : ẏt =
d

∑
i=1
Vi (yt ) ẋt

This is a classical setup in system control theory ...

input signal x =) output signal y

... and in our case the system response is modelled by ODE (�).
How would one simulate (�) on a computer?
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This is a classical setup in system control theory ...

input signal x =) output signal y

... and in our case the system response is modelled by ODE (�).
How would one simulate (�) on a computer?

P. K. Friz (TU Berlin and WIAS) rough paths, gap ODE/SDEs December 2009 8 / 22



More on ODEs: Euler estimates

So far, we have been interested in stochastic di¤erential equations of
the type

dyt =
d

∑
i=1
Vi (yt ) ∂B it

Let us now look at such di¤erential equations when B is replaced by
some path x 2 C 1

�
[0, 1] ,Rd

�
; that is

(�) : ẏt =
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This is a classical setup in system control theory ...

input signal x =) output signal y

... and in our case the system response is modelled by ODE (�).
How would one simulate (�) on a computer?

P. K. Friz (TU Berlin and WIAS) rough paths, gap ODE/SDEs December 2009 8 / 22



More on ODEs: Euler estimates

So far, we have been interested in stochastic di¤erential equations of
the type

dyt =
d

∑
i=1
Vi (yt ) ∂B it

Let us now look at such di¤erential equations when B is replaced by
some path x 2 C 1

�
[0, 1] ,Rd

�
; that is

(�) : ẏt =
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More precisely: x 2 C 1
�
[0, 1] ,Rd

�
, V1, ...,Vd 2 C 2,b (Re ,Re )

dy = V (y) dx () ẏ = Vi (y) ẋ i

(Summation over repeated indices!) Usual Euler-scheme:

yt � ys � Vi (ys )
Z t

s
dx i

Step-2 Euler scheme:

yt � ys � Vi (ys )
Z t

s
dx i + ViVj (ys )

Z t

s

Z r

s
dx idx j| {z }

=E(ys ,xs ,t)

with

xs ,t =
�Z t

s
dx ,

Z t

s

Z r

s
dx 
 dx

�
2 Rd �Rd�d .

Natural scaling assumption. For some α 2 (0, 1],����Z t

s
dx i
���� _ ����Z t

s

Z r

s
dx idx j

����1/2

� c1 jt � s jα .

[Okay for BM with α < 1/2 but keep x 2 C 1 for now ...]
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, V1, ...,Vd 2 C 2,b (Re ,Re )

dy = V (y) dx () ẏ = Vi (y) ẋ i

(Summation over repeated indices!) Usual Euler-scheme:

yt � ys � Vi (ys )
Z t
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dx i
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Z r
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�Z t
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Z t
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Z r

s
dx 
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�
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Davie�s Lemma: Error estimate on Step-2 Euler scheme��yt � ys � E �ys , xs ,t��� � c2 jt � s jθ
with θ = 3α > 1 =) need α > 1/3 [Okay for BM ...]. The catch is
uniformity

c2 = c2 (c1) .... not c2 (jẋ j∞) or c2
�
jx jLip

�

Easy to see that

E
�
ys , xs ,t

�
� c3 jt � s jα , c3 = c3 (c1)

jyt � ys j � c4 jt � s jα , c4 = c4 (c1) .

Take xn 2 C 1
�
[0, 1] ,Rd

�
with uniform bounds

sup
n

����Z t

s
dx in

���� _ ����Z t

s

Z r

s
dx indx

j
n

����1/2

� c1 jt � s jα

s.t. xn + iterated integrals converge (pointwise) to

xt =
�
x(1)t , x

(2)
t

�
2 Rd �Rd�d ;

then call t 7! xt a (geometric) rough path.
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Apply Davie�s lemma: get fyng with uniform Hölder bound c4.

Arzela�Ascoli =) fyn : n � 1g has limit points
... call them RDE solutions

More regularity + a bit work =) 9! RDE solution y � Φ (x; y0)
and write

dy = V (y) dx

... and this "Itô-Lyons" map Φ is continuous in the above sense
[Lyons 98].

Various useful extensions ...

Error estimates for step-N Euler schemes [F-Victoir , JDE 07]
RDE smoothness and Malliavin calculus [Cass-F, Annals of Math 09]
Continuity of Φ as �ow of di¤eomorphisms [Caruana-F, JDE 08]
Rough partial di¤erential equations [Caruana-F-Oberhauser ...]
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Examples of RDEs

ODEs: For a smooth driving signal, RDEs are just ODEs. Even here,
continuity statements are powerful.

As example, consider

ẏ = V1 (y) + V2 (y)() dy = V1 (y) dt + V2 (y) dt;

we immediately get the (splitting) result

e
1
nV2 � e 1nV1 � � � � � e 1nV2 � e 1nV1 ! eV1+V2

where etW denotes the solution �ow to ż = W (z).

Indeed, it su¢ ces to approximation the diagonal t 7! (t, t) by a 1/n
- step function

This approximation converges with uniform 1-Hölder (i.e. Lipschitz)
bounds
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Di¤erential equations driven by pure area:

t 7! xt �
�
0
0
,

�
0
�t

t
0

��
is the limit (with uniform 1/2-Hölder bounds ...) of the highly
oscillatory

xn (t) = n�1 exp
�
2πin2t

�
2 C �= R2.

Given two vector �elds V = (V1,V2) the RDE solution

dy = V (y) dx (1)

models the e¤ective behaviour of the highly oscillatory ODE

dyn = V (yn) dxn as n! ∞.

In fact, the RDE solution of (1) solves the ODE

ẏ = [V1,V2] (y)

where [V1,V2] is the Lie bracket of V1 and V2.
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Stochastic di¤erential equations: Let B be d-dimensional
Brownian motion. Since B (ω) /2 C 1 careful interpretation of the
stochastic di¤erential equation

dy = V (y) ∂B

is necessary (Itô-theory). De�ne enhanced Brownian motion

Bt (ω) =
�
Bt ,

Z t

0
Bs 
 ∂Bs

�
where ∂ indicates (Stratonovich) stochastic integration. Then

P [B is a geometric rough path] = 1.

In fact, martingale arguments shows that B (ω) is the limit of
piecewise linear approximations (with uniform (1/2� ε)-Hölder
bounds ...).
RDE solution to dy = V (y) dB is solved for �xed ω, depends
continuously on B and yields a (classical) Stratonovich SDE solution
...
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Caution: topology matters. Possible that, uniformly in t,�
B (n)t ,

Z t

0
B (n)s 
 dB (n)s

�
!
�
Bt ,

Z t

0
Bs 
 ∂Bs

�
while DE solutions converge to the "wrong" limit.

Key to understanding: view B as level-N rough path; [F-Oberhauser,
JFA 09]

By rough path continuity, this would not happen if, for some
α 2 (1/3, 1/2],����Z t

s
dB (n)t

���� _ ����Z t

s

Z r

s
dB (n)s 
 dB (n)s

����1/2

� C (ω) jt � s jα .
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Di¤erential equations with non-Brownian noise

Recall BM = martingale, Gaussian, Markov

SDE theory with (semi)martingale noise follows Itô�s approach and is
well-known

SDE theory with Gaussian noise is: previous to rough path theory
restricted to special examples (e.g. fractional Brownian motion)

SDE theory with Markovian noise: previous to rough path theory,
hardly anything

Thanks to rough path theory: large and natural classes of the
above processes can be lifted to rough paths with resulting
path-by-path stochastic di¤erential equations.
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Rough path spaces

For x 2 C 1
�
[0, 1] ,Rd

�
, x0 = 0, de�ne generalized increments

xs ,t =
�
1,
Z t

s
dx ,

Z t

s

Z r

s
dx 
 dx

�
2 R�Rd �Rd�d , 0 � s � t � 1

The (vector) space R�Rd �Rd�d with basis�
1, bi , bjk ; 1 � i , j , k � d

�
has (truncated tensor) algebra structure;

e.g.
2b1 
 (4� 3b2) = 8b1 � 6b12

xs ,t 2 T1 := f1g �Rd �Rd�d and (T1,
, 1) is a Lie group

T1 = exp
�

Rd �Rd�d
�

Non-linear key identity [Chen �37]

xs ,t 
 xt ,u = xs ,u , 0 � s � t � u � 1.
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Actually, xs ,t 2 G := exp
�
Rd � so (d)

�
since (1st order calculus!)

Sym
�Z t

s

Z r

s
dx 
 dx

�
=
1
2

�Z t

s
dx
�


�Z t

s
dx
�

G = exp
�
Rd � so (d)

�
is (a realization of) step-2 nilpotent Lie

group with d generators

geometric interpretation of log
�
xs ,t
�

: path- and area-increment
For d = 2, G isomorphic to the 3-dimensional Heisenberg group

Familiar concepts (scalar product, norm) generalize

Dilation δλ (1+ v +M) = 1+ λv + λ2M
Carnot-Carathoedory norm:
k1+ v +MkCC � jv j _ jM j

1/2 � jv j _ jAnti (M)j1/2

xt := x0,t de�nes a G -valued path (which lifts x) and xs ,t = x�1s 
 xt
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Recall our assumption in Davie�s lemma:����Z t

s
dx

���� _ ����Z t

s

Z r

s
dx 
 dx

����1/2

� c1 jt � s jα

... this says precisely that t 7! xt is a Hölder continuous path, with
exponent α, in the space G with Carnot-Caratheodory metric

dCC (xs , xt ) :=
x�1s 
 xt


CC =

xs ,tCC .

The space of all (α-Hölder, geometric) rough paths [previously
introduced as pointwise limits of C 1-paths + iterated integrals subject
to uniform α-Hölder bounds] is precisely�

x 2 C ([0, 1] ,G ) : sup
0�s<t�1

dCC (xs , xt )
jt � s jα

< ∞
�

Very convenient! E.g. to show rough path regularity of Bt (ω) ...
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Donsker�s theorem revisited

Theorem [Donsker �52] Under �nite second moment assumptions,
renormalized random walk in Rd converges weakly (in sup-topology)
to BM.

Theorem [Lamperti �62] Assuming �nite moments of all order,
convergence holds in α-Hölder topology, any α < 1/2.
Theorem [Breuillard-F-Huessman, Proc. AMS �09] Under
previous assumptions, convergence holds in α-Hölder rough path
topology, α < 1/2.
Corollary: Universal limit theorem for Markov chain approximations
to stochastic di¤erential equations.
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Sketch of proof:

Random walk can be viewed as random walk (ξi ) on the step-2 free
nilpotent group .

Convergence of f.d.d. follows from a CLT on free nilpotent groups.

Remains to establish tightness in α-Hölder rough path topology:

Boils down to showing

8p < ∞ : E
h
kξ1 � � � � � ξkk

4p
CC

i
= O

�
k2p
�
.
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References

If you want to read more about this:

[Lyons, Qian �02]: System control and rough paths, Oxford Univ.
Press

[Caruana, Levy, Lyons �05]: Di¤erential equations driven by rough
paths, St. Flours lecture

... google "st_�our" and �nd Lyons�handwritten St. Flour notes

[Friz, Victoir �10]: Multidimensional stochastic processes as rough
paths, Cambridge Univ. Press

... download the pdf from my homepage

P. K. Friz (TU Berlin and WIAS) rough paths, gap ODE/SDEs December 2009 22 / 22



References

If you want to read more about this:

[Lyons, Qian �02]: System control and rough paths, Oxford Univ.
Press

[Caruana, Levy, Lyons �05]: Di¤erential equations driven by rough
paths, St. Flours lecture

... google "st_�our" and �nd Lyons�handwritten St. Flour notes

[Friz, Victoir �10]: Multidimensional stochastic processes as rough
paths, Cambridge Univ. Press

... download the pdf from my homepage

P. K. Friz (TU Berlin and WIAS) rough paths, gap ODE/SDEs December 2009 22 / 22



References

If you want to read more about this:

[Lyons, Qian �02]: System control and rough paths, Oxford Univ.
Press

[Caruana, Levy, Lyons �05]: Di¤erential equations driven by rough
paths, St. Flours lecture

... google "st_�our" and �nd Lyons�handwritten St. Flour notes

[Friz, Victoir �10]: Multidimensional stochastic processes as rough
paths, Cambridge Univ. Press

... download the pdf from my homepage

P. K. Friz (TU Berlin and WIAS) rough paths, gap ODE/SDEs December 2009 22 / 22



References

If you want to read more about this:

[Lyons, Qian �02]: System control and rough paths, Oxford Univ.
Press

[Caruana, Levy, Lyons �05]: Di¤erential equations driven by rough
paths, St. Flours lecture

... google "st_�our" and �nd Lyons�handwritten St. Flour notes

[Friz, Victoir �10]: Multidimensional stochastic processes as rough
paths, Cambridge Univ. Press

... download the pdf from my homepage

P. K. Friz (TU Berlin and WIAS) rough paths, gap ODE/SDEs December 2009 22 / 22



References

If you want to read more about this:

[Lyons, Qian �02]: System control and rough paths, Oxford Univ.
Press

[Caruana, Levy, Lyons �05]: Di¤erential equations driven by rough
paths, St. Flours lecture

... google "st_�our" and �nd Lyons�handwritten St. Flour notes

[Friz, Victoir �10]: Multidimensional stochastic processes as rough
paths, Cambridge Univ. Press

... download the pdf from my homepage

P. K. Friz (TU Berlin and WIAS) rough paths, gap ODE/SDEs December 2009 22 / 22


	BMS Dec 2008
	Outline
	Slide I/1
	Slide I/2
	Slide II/1
	Slide II/2
	Slide III/1
	Slide IV/0
	Slide IV/1
	Slide IV/2
	Slide IV/3
	Part II
	Slide II/2
	Slide II/1
	Slide II/1
	Part VII
	Part VIII/1
	VIII/2
	VIII/3
	Part IX
	Slide III/2
	References


