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Donsker's invariance principle

@ Let (&;) be an IID sequence of zero-mean, unit-variance random
variables. [Donsker '52] shows that the rescaled,
piecewise-linearly-connected, random-walk

n 1
W = =5 (8144 G + (0= [08]) Sy )

converges weakly in the space of continuous functions on [0, 1].

P. K. Friz (TU Berlin and WIAS) rough paths, gap ODE/SDEs December 2009 3/22



Donsker's invariance principle

@ Let (&;) be an IID sequence of zero-mean, unit-variance random
variables. [Donsker '52] shows that the rescaled,
piecewise-linearly-connected, random-walk

wn = t — [nt
7 = s (G S + (0= [0]) S )

converges weakly in the space of continuous functions on [0, 1].
@ Limit is a probability measure on C [0, 1], called Wiener measure W.
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Donsker's invariance principle

@ Let (&;) be an IID sequence of zero-mean, unit-variance random
variables. [Donsker '52] shows that the rescaled,
piecewise-linearly-connected, random-walk

n 1
W = s (S + S + (0= [0]) S
converges weakly in the space of continuous functions on [0, 1].
@ Limit is a probability measure on C [0, 1], called Wiener measure W.

@ Brownian motion (BM) (B;) is a stochastic process with law W .
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variables. [Donsker '52] shows that the rescaled,
piecewise-linearly-connected, random-walk

n 1
W = s (S + S + (0= [0]) S
converges weakly in the space of continuous functions on [0, 1].
@ Limit is a probability measure on C [0, 1], called Wiener measure W.
@ Brownian motion (BM) (B;) is a stochastic process with law W .

e Straight-forward extension to R%-valued case
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Donsker's invariance principle

@ Let (&;) be an IID sequence of zero-mean, unit-variance random
variables. [Donsker '52] shows that the rescaled,
piecewise-linearly-connected, random-walk

n 1
W = s (S + S + (0= [0]) S
converges weakly in the space of continuous functions on [0, 1].
Limit is a probability measure on C [0, 1], called Wiener measure W.
Brownian motion (BM) (B;) is a stochastic process with law W .

Straight-forward extension to IR%-valued case

In particular, a d-dimensional Brownian motion is just an ensemble of
d independent Brownian motions, say

Bt:<B},...,B§’>.
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Brownian motion: alternative characterizations

e (i): continuous martingale such that (B? — t) is also a martingale
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Brownian motion: alternative characterizations

e (i): continuous martingale such that (B? — t) is also a martingale
o (ii): continuous 0-mean Gaussian process with covariance

E(BsB:) = min(s,t) Vs, t€[0,1]
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Brownian motion: alternative characterizations

e (i): continuous martingale such that (B? — t) is also a martingale
o (ii): continuous 0-mean Gaussian process with covariance
E(BsB:) = min(s,t) Vs, t€[0,1]

. 2
e (iii): Markov process with generator L = %837 in the sense that

E[f(X+Bt)] - X N Lf: Ef// Vf nice
t 2
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Brownian motion: alternative characterizations

e (i): continuous martingale such that (B? — t) is also a martingale

o (ii): continuous 0-mean Gaussian process with covariance
E(BsB:) = min(s,t) Vs, t€[0,1]
o (iii): Markov process with generator L = %% in the sense that
E|f B:)| — 1
[ (X +t t)] X S lf = Ef-// Yf nice

e Again, straight-forward extension to R%-valued case
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[t6 integration

e Fact: Typical sample paths of Brownian motion, t — B; (w), have
infinite variation on every interval.
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[t6 integration

e Fact: Typical sample paths of Brownian motion, t +— B; (w), have
infinite variation on every interval.

@ How to define integration against Brownian motion? t6's brilliant
idea: with some help and intuition from martingale theory,

/01 £ (t,w) dB: (w)

can be defined for reasonable non-anticipating f: start with simple
integrands and complete with isometry

E [(/Olf(t,w)dBt(w)>2] —E [/Ol,ﬂ(t,w)dt} .
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[t6 integration

e Fact: Typical sample paths of Brownian motion, t +— B; (w), have
infinite variation on every interval.

@ How to define integration against Brownian motion? t6's brilliant
idea: with some help and intuition from martingale theory,

/01 £ (t,w) dB: (w)

can be defined for reasonable non-anticipating f: start with simple
integrands and complete with isometry

E [(/Olf(t,w)dBt(w)>2] —E [/Ol,ﬂ(t,w)dt} .

@ Example: fot B;dBs = (Bt2 — t) ... 2nd order calculus!
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[t6 integration

e Fact: Typical sample paths of Brownian motion, t +— B; (w), have
infinite variation on every interval.

@ How to define integration against Brownian motion? t6's brilliant
idea: with some help and intuition from martingale theory,

/01 £ (t,w) dB: (w)

can be defined for reasonable non-anticipating f: start with simple
integrands and complete with isometry

E [(/Olf(t,w)dBt(w)>2] —E [/Ol,ﬂ(t,w)dt} .

@ Example: fot BsdBs = % (Bt2 — t) ... 2nd order calculus!
@ Fact: Ité-integrals have left-point Riemann-sum approximations.
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[t6 integration

e Fact: Typical sample paths of Brownian motion, t +— B; (w), have
infinite variation on every interval.

@ How to define integration against Brownian motion? t6's brilliant
idea: with some help and intuition from martingale theory,

/01 £ (t,w) dB: (w)

can be defined for reasonable non-anticipating f: start with simple
integrands and complete with isometry

E [(/Olf(t,w)dBt(w)>2] —E [/Ol,ﬂ(t,w)dt} .

@ Example: fot BsdBs = % (Bt2 — t) ... 2nd order calculus!

@ Fact: Ité-integrals have left-point Riemann-sum approximations.

@ Define Stratonovich-integration via mid-point Riemann-sum
approximations = [/ B;dBs = 1B (1st order calculus!)
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Stochastic differential equations

@ Let B be a d-dimensional Brownian motion.
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@ Let B be a d-dimensional Brownian motion.

@ Let Vp,..., Vy be a collection of nice vector fields on IR€
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Stochastic differential equations

@ Let B be a d-dimensional Brownian motion.
@ Let Vp,..., Vy be a collection of nice vector fields on IR€

@ A solution (process) y = y; (w) to

dy = Vo(y)dt—l—ZV )oB'
i=1

is, by definition, a solution to corresponding integral equation.
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Stochastic differential equations

@ Let B be a d-dimensional Brownian motion.
@ Let Vp,..., Vy be a collection of nice vector fields on IR€

@ A solution (process) y = y; (w) to

dy = Vo (y) dt—l—ZV )oB'
i=1
is, by definition, a solution to corresponding integral equation.

@ At the price of modifying the drift vector field Vi we can switch to It6
formulation (0B — dB)
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Stochastic differential equations

Let B be a d-dimensional Brownian motion.

Let Vg, ..., Vy be a collection of nice vector fields on IR€

A solution (process) y = y; (w) to

dy = Vo (y) dt—l—ZV )oB'
i=1
is, by definition, a solution to corresponding integral equation.

At the price of modifying the drift vector field V{ we can switch to Ité
formulation (0B — dB)

@ Existence, uniqueness by fixpoint arguments.
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Stochastic differential equations

Let B be a d-dimensional Brownian motion.

Let Vg, ..., Vy be a collection of nice vector fields on IR€

A solution (process) y = y; (w) to

dy = Vo (y) dt—l—ZV )oB'
=1

is, by definition, a solution to corresponding integral equation.

At the price of modifying the drift vector field V{ we can switch to Ité
formulation (0B — dB)

Existence, uniqueness by fixpoint arguments.

For simplicity only: from here on Vy = 0.
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The Doss-Sussman approach

@ Let B be a d-dimensional Brownian motion, d = 1.
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The Doss-Sussman approach

@ Let B be a d-dimensional Brownian motion, d = 1.
@ Let V be a nice vector field on IR€
@ Aim: find solution to SDE

dy = V (y)ddB.
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The Doss-Sussman approach

@ Let B be a d-dimensional Brownian motion, d = 1.
@ Let V be a nice vector field on IR€
@ Aim: find solution to SDE

dy = V (y)ddB.
o Let (e'") be the solution flow to the ODE 2 = V' (z). Then

Bi(w)V

y(tw):=e Yo

is the SDE solution. Proof: First order calculus.
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The Doss-Sussman approach

Let B be a d-dimensional Brownian motion, d = 1.

Let V be a nice vector field on R¢
@ Aim: find solution to SDE

dy = V (y)ddB.
o Let (e'") be the solution flow to the ODE 2 = V' (z). Then

Bi(w)V

y(tw):=e Yo

is the SDE solution. Proof: First order calculus.
This is an ODE solution method for SDEs.
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The Doss-Sussman approach

@ Let B be a d-dimensional Brownian motion, d = 1.
@ Let V be a nice vector field on IR€
@ Aim: find solution to SDE

dy = V (y)ddB.
o Let (e'") be the solution flow to the ODE 2 = V' (z). Then

Bi(w)V

y(tw):=e Yo

is the SDE solution. Proof: First order calculus.
This is an ODE solution method for SDEs.

Benefit: solution depends in a robust way on B and yp.
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The Doss-Sussman approach

@ Let B be a d-dimensional Brownian motion, d = 1.
@ Let V be a nice vector field on IR€
@ Aim: find solution to SDE

dy = V (y)ddB.
o Let (e'") be the solution flow to the ODE 2 = V' (z). Then

Bi(w)V

y(tw):=e Yo

is the SDE solution. Proof: First order calculus.
This is an ODE solution method for SDEs.

Benefit: solution depends in a robust way on B and yp.

A drift Vo (y)dt can be incorporated (flow decomposition)
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The Doss-Sussman approach

Let B be a d-dimensional Brownian motion, d = 1.

Let V be a nice vector field on R¢
@ Aim: find solution to SDE

dy = V (y)ddB.
o Let (e'") be the solution flow to the ODE 2 = V' (z). Then

Bi(w)V

y(tw):=e Yo

is the SDE solution. Proof: First order calculus.

This is an ODE solution method for SDEs.

Benefit: solution depends in a robust way on B and yp.

A drift Vo (y)dt can be incorporated (flow decomposition)
... but this method fails when d > 1.
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More on ODEs: Euler estimates

@ So far, we have been interested in stochastic differential equations of
the type

d
dyr = Z Vi (}/t) 0B,
i=1
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More on ODEs: Euler estimates

@ So far, we have been interested in stochastic differential equations of
the type

d
dyr = Z Vi (}/t) 0B,
i=1

@ Let us now look at such differential equations when B is replaced by
some path x € C! ([0 1] ,]Rd) - that is

d
(*) = ; Vi (yt)kt
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More on ODEs: Euler estimates

@ So far, we have been interested in stochastic differential equations of
the type

d
dyr = Z Vi (}/t) 0B,
i=1

@ Let us now look at such differential equations when B is replaced by
some path x € C! ([0 1] ,]Rd) - that is

d
() sy = ) Vi(ye) %
i=1
@ This is a classical setup in system control theory ...

input signal x = output signal y
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More on ODEs: Euler estimates

@ So far, we have been interested in stochastic differential equations of
the type

d
dyr = Z Vi (}/t) 0B,
i=1

@ Let us now look at such differential equations when B is replaced by
some path x € C! ([0 1] ,]Rd) - that is

d
(*) = ; Vi (yt)kt

This is a classical setup in system control theory ...

input signal x = output signal y

. and in our case the system response is modelled by ODE ().
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More on ODEs: Euler estimates

@ So far, we have been interested in stochastic differential equations of
the type

d
dy: = Z V; (}/t) aBé
i=1
@ Let us now look at such differential equations when B is replaced by
some path x € C! ([0 1] ,]Rd) - that is

d
(*) = ; Vi (yt)kt

This is a classical setup in system control theory ...

input signal x = output signal y

. and in our case the system response is modelled by ODE ().

How would one simulate (*) on a computer?
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@ More precisely: x € C! ([O 1] ,]Rd) VA, .., Vg € C?P(RE,R®)
dy =V (y)dx <=y =V (y) X'

(Summation over repeated indices!) Usual Euler-scheme:

t .
yi—ys =V, (YS>/ dx'
s
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@ More precisely: x € C! ([O 1] ,]Rd) V1, ..., Vg € C?P (Re, R®)
dy =V (y)dx <y = \/,-(y))'(i

(Summation over repeated indices!) Usual Euler-scheme:

t .
yi—ys =V, (YS>/ dx'
s

@ Step-2 Euler scheme:

Ye—Yys =V, )/s/dX—l-V ys//dxdxf

:g(ySvls,t)

t t r
X, s = (/ dx,/ / dx®dx) € RY @ RY¥9,
S S S

with
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@ More precisely: x € C! ([O 1] ,]Rd) V1, ..., Vg € C?P (Re, R®)
dy =V (y)dx <y = \/,-(y))'(i

(Summation over repeated indices!) Usual Euler-scheme:

t .
yi—ys =V, (YS)/ dx'
s

@ Step-2 Euler scheme:

Ye—Yys =V, )/s/dX—l-V ys//dxdxf

:g(ySvls,t)

t t r
X, s = (/ dx,/ / dx®dx) € RY @ RY¥9,
S S S

o Natural scaling assumption. For some a € (0, 1],

with

<alt—s|".

[Okay for BM with & < 1/2 but keep x € C! for now ...]
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@ Davie's Lemma: Error estimate on Step-2 Euler scheme

lye —ys =€ (Y. xo0) | < 2 |t —s|°
with 6 =3a > 1 = need a > 1/3 [Okay for BM ...]. The catch is
uniformity

& =6 (a) ot o (|i) or & (|xl,,)
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@ Davie's Lemma: Error estimate on Step-2 Euler scheme
e —vs = E (v xs) | < 2|t —s]°
with 6 =3a > 1 = need a > 1/3 [Okay for BM ...]. The catch is
uniformity
o =0c(c) ...not o (|x|,) or (|X|L,-p)
@ Easy to see that
£ (}’Svls,t)
|}/t - )/s|

alt—s|", a=c(a)

alt—s|", a=caql(a).
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@ Davie's Lemma: Error estimate on Step-2 Euler scheme
e —vs = E (v xs) | < 2|t —s]°
with 6 =3a > 1 = need a > 1/3 [Okay for BM ...]. The catch is
uniformity
o =0c(c) ...not o (|x|,) or (|X|L,-p)
@ Easy to see that
g (.ySIZS’t) S
ve—ys| < alt—s|", a=al(a).
e Take x, € C* ([0,1],R9) with uniform bounds

t t oo |1/2
/dx,’, //dx,gdx,f,
S S S

s.t. x, + iterated integrals converge (pointwise) to

X; = (lgl).l,@) c ]Rd @RdXd;

alt—s|", a=c(a)

sup v <alt—s|

n

then call t — x, a (geometric) rough path.
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o Apply Davie's lemma: get {y,} with uniform Hélder bound cs.
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o Apply Davie's lemma: get {y,} with uniform Hélder bound cs.

o Arzela—Ascoli = {y, : n > 1} has limit points
. call them RDE solutions
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o Apply Davie's lemma: get {y,} with uniform Hélder bound cs.

o Arzela—Ascoli = {y, : n > 1} has limit points
. call them RDE solutions

e More regularity + a bit work == 3! RDE solution y = ® (x; yo)

and write

. and this "/t6-Lyons" map @ is continuous in the above sense
[Lyons 98].
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Apply Davie's lemma: get {y,} with uniform Hélder bound ¢.

Arzela—Ascoli = {y, : n > 1} has limit points
. call them RDE solutions

More regularity + a bit work = 3! RDE solution y = @ (x; yo)
and write

. and this "/t6-Lyons" map @ is continuous in the above sense
[Lyons 98].

@ Various useful extensions ...
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Apply Davie's lemma: get {y,} with uniform Hélder bound ¢.

Arzela—Ascoli = {y, : n > 1} has limit points
. call them RDE solutions

More regularity + a bit work = 3! RDE solution y = @ (x; yo)
and write

. and this "/t6-Lyons" map @ is continuous in the above sense
[Lyons 98].
@ Various useful extensions ...

o Error estimates for step-N Euler schemes [F-Victoir , JDE 07]
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Arzela—Ascoli = {y, : n > 1} has limit points
. call them RDE solutions

More regularity + a bit work = 3! RDE solution y = @ (x; yo)
and write

. and this "/t6-Lyons" map @ is continuous in the above sense
[Lyons 98].
Various useful extensions ...

o Error estimates for step-N Euler schemes [F-Victoir , JDE 07]
o RDE smoothness and Malliavin calculus [Cass-F, Annals of Math 09]
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Apply Davie's lemma: get {y,} with uniform Hélder bound ¢.

Arzela—Ascoli = {y, : n > 1} has limit points
. call them RDE solutions

More regularity + a bit work = 3! RDE solution y = @ (x; yo)
and write

. and this "/t6-Lyons" map @ is continuous in the above sense
[Lyons 98].
@ Various useful extensions ...

Error estimates for step-N Euler schemes [F-Victoir , JDE 07]

RDE smoothness and Malliavin calculus [Cass-F, Annals of Math 09]
Continuity of ® as flow of diffeomorphisms [Caruana-F, JDE 08]
Rough partial differential equations [Caruana-F-Oberhauser ...]
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Examples of RDEs

@ ODEs: For a smooth driving signal, RDEs are just ODEs. Even here,
continuity statements are powerful.
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Examples of RDEs

@ ODEs: For a smooth driving signal, RDEs are just ODEs. Even here,
continuity statements are powerful.

@ As example, consider
y=Vi(y)+Va(y) <= dy = Vi(y)dt+ Va(y)dt
we immediately get the (splitting) result

1

1 1
V2 0 etVig . oetVa g iV L, QVitVe

where et denotes the solution flow to z = W (z).
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Examples of RDEs

@ ODEs: For a smooth driving signal, RDEs are just ODEs. Even here,
continuity statements are powerful.

@ As example, consider
y=Vi(y)+Va(y) <= dy = Vi(y)dt+ Va(y)dt

we immediately get the (splitting) result

v g 1 1

o eiVag bV L, gVite

where et denotes the solution flow to z = W (z).

o Indeed, it suffices to approximation the diagonal t — (t,t) by a 1/n
- step function
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Examples of RDEs

@ ODEs: For a smooth driving signal, RDEs are just ODEs. Even here,
continuity statements are powerful.

@ As example, consider
y=Vi(y)+Va(y) <= dy = Vi(y)dt+ Va(y)dt

we immediately get the (splitting) result

v g 1 1

o eiVag bV L, gVite

where et denotes the solution flow to z = W (z).
o Indeed, it suffices to approximation the diagonal t — (t,t) by a 1/n
- step function

e This approximation converges with uniform 1-Holder (i.e. Lipschitz)
bounds
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o Differential equations driven by pure area:

e (8(0)

is the limit (with uniform 1/2-Hoélder bounds ...) of the highly
oscillatory

xn (t) = n"texp (2min’t) € C R?.

Given two vector fields V = (V4, V») the RDE solution

dy = V (y) dx 1
models the effective behaviour of the highly oscillatory ODE

dy" =V (y")dx" as n— oo.

In fact, the RDE solution of (1) solves the ODE

y =W V2] (y)
where [V1, V5] is the Lie bracket of V; and V5.
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@ Stochastic differential equations: Let B be d-dimensional
Brownian motion. Since B (w) ¢ C! careful interpretation of the
stochastic differential equation

dy =V (y)oB

is necessary (Ito-theory). Define enhanced Brownian motion

B, (w) = (Bt, /Ot B ® E:)Bs>

where 9 indicates (Stratonovich) stochastic integration. Then
IP [B is a geometric rough path] = 1.

In fact, martingale arguments shows that B (w) is the limit of
piecewise linear approximations (with uniform (1/2 — ¢)-Holder
bounds ...).

e RDE solution to dy = V () dB is solved for fixed w, depends
continuously on B and yields a (classical) Stratonovich SDE solution
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o Caution: topology matters. Possible that, uniformly in t,

t t
(B}”),/ B§”)®d5§")> - (Bt,/ BS®BBS>
0 0

while DE solutions converge to the "wrong" limit.

P. K. Friz (TU Berlin and WIAS) rough paths, gap ODE/SDEs December 2009 15 / 22



o Caution: topology matters. Possible that, uniformly in t,
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(B}”),/ B§”)®d5§")> - (Bt,/ BS®BBS>
0 0

while DE solutions converge to the "wrong" limit.

e Key to understanding: view B as level-N rough path; [F-Oberhauser,
JFA 09]
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o Caution: topology matters. Possible that, uniformly in t,

t t
(B}”),/ B§”)®d5§")> - (Bt,/ BS®BBS>
0 0

while DE solutions converge to the "wrong" limit.

e Key to understanding: view B as level-N rough path; [F-Oberhauser,
JFA 09]

@ By rough path continuity, this would not happen if, for some

e (1/3,1/2],
t r
/ / d8!" & 4B

t
/ B!

1/2

v < C(w)|t—s|".
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Differential equations with non-Brownian noise

@ Recall BM = martingale, Gaussian, Markov
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Differential equations with non-Brownian noise

@ Recall BM = martingale, Gaussian, Markov
o SDE theory with (semi)martingale noise follows Ité's approach and is

well-known

@ SDE theory with Gaussian noise is: previous to rough path theory
restricted to special examples (e.g. fractional Brownian motion)

@ SDE theory with Markovian noise: previous to rough path theory,
hardly anything
@ Thanks to rough path theory: large and natural classes of the

above processes can be lifted to rough paths with resulting
path-by-path stochastic differential equations.
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Rough path spaces

@ For x e C! ([0 1] ,IRd) , Xo = 0, define generalized increments

t t r
xs,tz(l,/ dx./ / dx®dx>elR@JRd@1Rdxd, 0<s<t<l1
S S S
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Rough path spaces

@ For x e C! ([0 1] ,IRd) , Xo = 0, define generalized increments
t t r
Xo s = (1/ dx,/ / dx®dx> ERORIGRIY, 0<s<t<1
S S S

o The (vector) space R @ RY @ RY*? with basis
(1, b b1 <ij k< d) has (truncated tensor) algebra structure;
e.g.
2b' ® (4 —3b°) = 8b' — 6b2
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@ For x e C! ([0 1] ,IRd) , Xo = 0, define generalized increments
t t r
Xo s = (1/ dx,/ / dx®dx> ERORIGRIY, 0<s<t<1
S S S

o The (vector) space R @ RY @ RY*? with basis
(1, b b1 <ij k< d) has (truncated tensor) algebra structure;
e.g.
2b' ® (4 —3b°) = 8b' — 6b2

o x,,€T1:={1} &R @R and (T1,®,1) is a Lie group

T1 = exp (IRd &) ]RdXd)
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Rough path spaces

@ For x e C! ([0 1] ,IRd) , Xo = 0, define generalized increments
t t r
Xo s = (1/ dx,/ / dx®dx> ERORIGRIY, 0<s<t<1
S S S

o The (vector) space R @ RY @ RY*? with basis
(1, b b1 <ij k< d) has (truncated tensor) algebra structure;
e.g.
2b' ® (4 —3b°) = 8b' — 6b2

o x,,€T1:={1} &R @R and (T1,®,1) is a Lie group
T1 = exp (IRd P ]RdXd)
o Non-linear key identity [Chen '37]

Xe: Xy =%Xgpy, 0<s<t<u<1
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o Actually, x, , € G := exp (RY @ so (d)) since (1st order calculus!)

t r 1 t t
Sym</ / dx®dx> :</ dx>®</ dx)
S ) 2 S S
G = exp (]Rd @ so (d)) is (a realization of) step-2 nilpotent Lie
group with d generators
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G = exp (]Rd @ so (d)) is (a realization of) step-2 nilpotent Lie
group with d generators

@ geometric interpretation of log (Zs,t) : path- and area-increment
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Sym</:/srdx®dx>:;</Stdx>®</stdx>

G = exp (]Rd @ so (d)) is (a realization of) step-2 nilpotent Lie
group with d generators

geometric interpretation of log (Zs,t) : path- and area-increment

For d = 2, G isomorphic to the 3-dimensional Heisenberg group
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G = exp (]Rd @ so (d)) is (a realization of) step-2 nilpotent Lie
group with d generators

geometric interpretation of log (Zs,t) : path- and area-increment

For d = 2, G isomorphic to the 3-dimensional Heisenberg group

Familiar concepts (scalar product, norm) generalize

o Dilation 8, (1+v+ M) =1+Av+A’M
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Actually, x, , € G := exp (R? @ so (d)) since (1st order calculus!)

t r 1 t t
Sym</ / dx®dx> :</ dx>®</ dx)
S ) 2 S )
G = exp (]Rd @ so (d)) is (a realization of) step-2 nilpotent Lie
group with d generators

geometric interpretation of log (Zs,t) : path- and area-increment

(]

For d = 2, G isomorphic to the 3-dimensional Heisenberg group

Familiar concepts (scalar product, norm) generalize

o Dilation 8, (1+v+ M) =1+Av+A’M
e Carnot-Carathoedory norm:
114 v+ Ml e ~ V]V M2~ |v] v [Anti (M)[2

X; := Xg ; defines a G-valued path (which lifts x) and x, , = x; ' ®x,
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@ Recall our assumption in Davie's lemma:

t t r
/ dx / / dx ® dx
S S S

... this says precisely that t — x, is a Holder continuous path, with
exponent a, in the space G with Carnot-Caratheodory metric

1/2

v <aqlt—s|

dec (Xs, %) i= Hgl ®5tHcc = Hls,tHCC'
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@ Recall our assumption in Davie's lemma:

t t r
/ dx / / dx ® dx
S S S

... this says precisely that t — x, is a Holder continuous path, with
exponent a, in the space G with Carnot-Caratheodory metric

1/2

v <aqlt—s|

dec (Xs, %) i= Hgl ®5tHcc = Hls,tHCC'

@ The space of all (a-Hélder, geometric) rough paths [previously
introduced as pointwise limits of C!-paths + iterated integrals subject
to uniform a-Holder bounds] is precisely

{xe C((0,1],6): sup C’CC<XS"‘t><oo}

0<s<t<1 |t— 5|1X
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@ Recall our assumption in Davie's lemma:

t t r
/ dx / / dx ® dx
S S S

... this says precisely that t — x, is a Holder continuous path, with
exponent a, in the space G with Carnot-Caratheodory metric

1/2

v <aqlt—s|

dec (Xs, %) i= Hgl ®5tHcc = Hls,tHCC'

@ The space of all (a-Hélder, geometric) rough paths [previously
introduced as pointwise limits of C!-paths + iterated integrals subject
to uniform a-Holder bounds] is precisely

{xe C((0,1],6): sup C’CC<XS"‘t><oo}

0<s<t<1 |t— 5|1X

@ Very convenient! E.g. to show rough path regularity of B, (w) ...
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Donsker’s theorem revisited

e Theorem [Donsker '52] Under finite second moment assumptions,
renormalized random walk in RY converges weakly (in sup-topology)
to BM.
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e Theorem [Lamperti '62] Assuming finite moments of all order,
convergence holds in a-Holder topology, any o« < 1/2.
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e Theorem [Donsker '52] Under finite second moment assumptions,
renormalized random walk in RY converges weakly (in sup-topology)
to BM.

e Theorem [Lamperti '62] Assuming finite moments of all order,
convergence holds in a-Holder topology, any o« < 1/2.
e Theorem [Breuillard-F-Huessman, Proc. AMS ’09] Under

previous assumptions, convergence holds in a-Holder rough path
topology, & < 1/2.
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Donsker’s theorem revisited

e Theorem [Donsker '52] Under finite second moment assumptions,
renormalized random walk in RY converges weakly (in sup-topology)
to BM.

e Theorem [Lamperti '62] Assuming finite moments of all order,
convergence holds in a-Holder topology, any o« < 1/2.

e Theorem [Breuillard-F-Huessman, Proc. AMS ’09] Under
previous assumptions, convergence holds in a-Holder rough path
topology, & < 1/2.

@ Corollary: Universal limit theorem for Markov chain approximations
to stochastic differential equations.
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@ Sketch of proof:

e Random walk can be viewed as random walk (&;) on the step-2 free
nilpotent group .
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nilpotent group .

@ Convergence of f.d.d. follows from a CLT on free nilpotent groups.

@ Remains to establish tightness in a-Ho6lder rough path topology:
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Sketch of proof:

Random walk can be viewed as random walk (§;) on the step-2 free
nilpotent group .

Convergence of f.d.d. follows from a CLT on free nilpotent groups.

Remains to establish tightness in a-Holder rough path topology:

Boils down to showing

Vp<oo:IE[||§1*...*§k||4CPC] :O(kzp)_
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References

o If you want to read more about this:

e [Lyons, Qian ’'02]: System control and rough paths, Oxford Univ.
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