Rough paths and the Gap Between Deterministic and Stochastic Differential Equations

P. K. Friz

TU Berlin and WIAS

December 2009

P. K. Friz (TU Berlin and WIAS)

rough paths, gap ODE/SDEs

December 2009 1 / 22

- I Donsker's invariance principle and Brownian motion
- II Itô integration and SDEs
- III Doss-Sussman's ODE approach to SDEs
- IV More on ODEs: Euler estimates
- V Smart ODE limits: rough differential equations
- VI Brownian motion as a rough path
- VII SDEs driven by non-Brownian noise
- VIII Rough path spaces
 - IX Donsker's principle revisited

Let (ξ_i) be an IID sequence of zero-mean, unit-variance random variables. [Donsker '52] shows that the rescaled, piecewise-linearly-connected, random-walk

$$W_t^{(n)} = \frac{1}{n^{1/2}} \left(\xi_1 + \dots + \xi_{[tn]} + (nt - [nt]) \, \xi_{[nt]+1} \right)$$

Let (ξ_i) be an IID sequence of zero-mean, unit-variance random variables. [Donsker '52] shows that the rescaled, piecewise-linearly-connected, random-walk

$$W_t^{(n)} = \frac{1}{n^{1/2}} \left(\xi_1 + \dots + \xi_{[tn]} + (nt - [nt]) \, \xi_{[nt]+1} \right)$$

converges weakly in the space of continuous functions on [0, 1].

• Limit is a probability measure on C[0,1], called Wiener measure $\mathbb W.$

Let (ξ_i) be an IID sequence of zero-mean, unit-variance random variables. [Donsker '52] shows that the rescaled, piecewise-linearly-connected, random-walk

$$W_t^{(n)} = \frac{1}{n^{1/2}} \left(\xi_1 + \dots + \xi_{[tn]} + (nt - [nt]) \, \xi_{[nt]+1} \right)$$

- Limit is a probability measure on C[0,1], called Wiener measure \mathbb{W} .
- Brownian motion (BM) (B_t) is a stochastic process with law ${\mathbb W}$.

Let (ξ_i) be an IID sequence of zero-mean, unit-variance random variables. [Donsker '52] shows that the rescaled, piecewise-linearly-connected, random-walk

$$W_t^{(n)} = \frac{1}{n^{1/2}} \left(\xi_1 + \dots + \xi_{[tn]} + (nt - [nt]) \, \xi_{[nt]+1} \right)$$

- Limit is a probability measure on C[0,1], called Wiener measure \mathbb{W} .
- Brownian motion (BM) (B_t) is a stochastic process with law $\mathbb W$.
- Straight-forward extension to \mathbb{R}^d -valued case

Let (ξ_i) be an IID sequence of zero-mean, unit-variance random variables. [Donsker '52] shows that the rescaled, piecewise-linearly-connected, random-walk

$$W_t^{(n)} = \frac{1}{n^{1/2}} \left(\xi_1 + \dots + \xi_{[tn]} + (nt - [nt]) \, \xi_{[nt]+1} \right)$$

- Limit is a probability measure on C[0,1], called Wiener measure $\mathbb W.$
- Brownian motion (BM) (B_t) is a stochastic process with law ${\mathbb W}$.
- Straight-forward extension to \mathbb{R}^d -valued case
- In particular, a *d*-dimensional Brownian motion is just an ensemble of *d* independent Brownian motions, say

$$B_t = \left(B_t^1, \ldots, B_t^d\right).$$

• (i): continuous martingale such that $\left(B_t^2-t
ight)$ is also a martingale

- (i): continuous martingale such that (B_t^2-t) is also a martingale
- (ii): continuous 0-mean Gaussian process with covariance

$$E(B_s B_t) = \min(s, t) \quad \forall s, t \in [0, 1]$$

- (i): continuous martingale such that $\left(B_t^2-t
 ight)$ is also a martingale
- (ii): continuous 0-mean Gaussian process with covariance

$$E(B_sB_t) = \min(s, t) \quad \forall s, t \in [0, 1]$$

• (iii): Markov process with generator $L = \frac{1}{2} \frac{\partial^2}{\partial x^2}$ in the sense that

$$\frac{E\left[f\left(x+B_{t}\right)\right]-x}{t} \to Lf = \frac{1}{2}f'' \quad \forall f \text{ nice}$$

- (i): continuous martingale such that $\left(B_t^2-t
 ight)$ is also a martingale
- (ii): continuous 0-mean Gaussian process with covariance

$$E(B_sB_t) = \min(s, t) \quad \forall s, t \in [0, 1]$$

• (iii): Markov process with generator $L = \frac{1}{2} \frac{\partial^2}{\partial x^2}$ in the sense that

$$\frac{E\left[f\left(x+B_{t}\right)\right]-x}{t} \rightarrow Lf = \frac{1}{2}f'' \quad \forall f \text{ nice}$$

• Again, straight-forward extension to \mathbb{R}^d -valued case

• Fact: Typical sample paths of Brownian motion, $t \mapsto B_t(\omega)$, have infinite variation on every interval.

- Fact: Typical sample paths of Brownian motion, t → B_t (ω), have infinite variation on every interval.
- How to define integration against Brownian motion? Itô's brilliant idea: with some help and intuition from martingale theory,

$$\int_{0}^{1} f(t,\omega) \, dB_{t}(\omega)$$

can be defined for reasonable non-anticipating f: start with simple integrands and complete with isometry

$$E\left[\left(\int_{0}^{1}f(t,\omega)\,dB_{t}(\omega)\right)^{2}\right]=E\left[\int_{0}^{1}f^{2}(t,\omega)\,dt\right].$$

- Fact: Typical sample paths of Brownian motion, t → B_t (ω), have infinite variation on every interval.
- How to define integration against Brownian motion? Itô's brilliant idea: with some help and intuition from martingale theory,

$$\int_{0}^{1} f(t,\omega) \, dB_{t}(\omega)$$

can be defined for reasonable non-anticipating f: start with simple integrands and complete with isometry

$$E\left[\left(\int_{0}^{1}f(t,\omega)\,dB_{t}(\omega)\right)^{2}\right]=E\left[\int_{0}^{1}f^{2}(t,\omega)\,dt\right].$$

• Example: $\int_0^t B_s dB_s = \frac{1}{2} \left(B_t^2 - t \right)$... 2nd order calculus!

- Fact: Typical sample paths of Brownian motion, t → B_t (ω), have infinite variation on every interval.
- How to define integration against Brownian motion? Itô's brilliant idea: with some help and intuition from martingale theory,

$$\int_{0}^{1} f(t,\omega) \, dB_{t}(\omega)$$

can be defined for reasonable non-anticipating f: start with simple integrands and complete with isometry

$$E\left[\left(\int_{0}^{1}f(t,\omega)\,dB_{t}(\omega)\right)^{2}\right]=E\left[\int_{0}^{1}f^{2}(t,\omega)\,dt\right].$$

• Example: $\int_0^t B_s dB_s = rac{1}{2} \left(B_t^2 - t
ight)$... 2nd order calculus!

• Fact: Itô-integrals have left-point Riemann-sum approximations.

- Fact: Typical sample paths of Brownian motion, t → B_t (ω), have infinite variation on every interval.
- How to define integration against Brownian motion? Itô's brilliant idea: with some help and intuition from martingale theory,

$$\int_{0}^{1} f(t,\omega) \, dB_{t}(\omega)$$

can be defined for reasonable non-anticipating f: start with simple integrands and complete with isometry

$$E\left[\left(\int_{0}^{1}f(t,\omega)\,dB_{t}(\omega)\right)^{2}\right]=E\left[\int_{0}^{1}f^{2}(t,\omega)\,dt\right].$$

- Example: $\int_0^t B_s dB_s = rac{1}{2} \left(B_t^2 t
 ight)$... 2nd order calculus!
- Fact: Itô-integrals have left-point Riemann-sum approximations.
- Define Stratonovich-integration via mid-point Riemann-sum approximations $\implies \int_0^t B_s \partial B_s = \frac{1}{2}B_t^2$ (1st order calculus!)

• Let *B* be a *d*-dimensional Brownian motion.

- Let *B* be a *d*-dimensional Brownian motion.
- Let V_0,\ldots,V_d be a collection of nice vector fields on \mathbb{R}^e

- Let *B* be a *d*-dimensional Brownian motion.
- Let V_0, \ldots, V_d be a collection of nice vector fields on \mathbb{R}^e
- A solution (process) $y=y_{t}\left(\omega
 ight)$ to

$$dy = V_{0}(y) dt + \sum_{i=1}^{d} V_{i}(y) \partial B^{i}$$

- Let *B* be a *d*-dimensional Brownian motion.
- Let V_0, \ldots, V_d be a collection of nice vector fields on \mathbb{R}^e
- A solution (process) $y=y_{t}\left(\omega
 ight)$ to

$$dy = V_{0}(y) dt + \sum_{i=1}^{d} V_{i}(y) \partial B^{i}$$

• At the price of modifying the drift vector field V_0 we can switch to Itô formulation $(\partial B \rightarrow dB)$

- Let *B* be a *d*-dimensional Brownian motion.
- Let V_0, \ldots, V_d be a collection of nice vector fields on \mathbb{R}^e
- A solution (process) $y=y_{t}\left(\omega
 ight)$ to

$$dy = V_{0}(y) dt + \sum_{i=1}^{d} V_{i}(y) \partial B^{i}$$

- At the price of modifying the drift vector field V_0 we can switch to Itô formulation $(\partial B \rightarrow dB)$
- Existence, uniqueness by fixpoint arguments.

- Let *B* be a *d*-dimensional Brownian motion.
- Let V_0, \ldots, V_d be a collection of nice vector fields on \mathbb{R}^e
- A solution (process) $y=y_{t}\left(\omega
 ight)$ to

$$dy = V_{0}(y) dt + \sum_{i=1}^{d} V_{i}(y) \partial B^{i}$$

- At the price of modifying the drift vector field V_0 we can switch to Itô formulation $(\partial B \rightarrow dB)$
- Existence, uniqueness by fixpoint arguments.
- For simplicity only: from here on $V_0 = 0$.

• Let B be a d-dimensional Brownian motion, d = 1.

- Let B be a d-dimensional Brownian motion, d = 1.
- Let V be a nice vector field on \mathbb{R}^e

- Let B be a d-dimensional Brownian motion, d = 1.
- Let V be a nice vector field on \mathbb{R}^e
- Aim: find solution to SDE

$$dy = V(y) \partial dB.$$

- Let B be a d-dimensional Brownian motion, d = 1.
- Let V be a nice vector field on \mathbb{R}^e
- Aim: find solution to SDE

$$dy = V(y) \partial dB.$$

• Let (e^{tV}) be the solution flow to the ODE $\dot{z} = V(z)$. Then

$$y(t,\omega) := e^{B_t(\omega)V} y_0$$

- Let B be a d-dimensional Brownian motion, d = 1.
- Let V be a nice vector field on \mathbb{R}^e
- Aim: find solution to SDE

$$dy = V(y) \partial dB.$$

• Let (e^{tV}) be the solution flow to the ODE $\dot{z} = V(z)$. Then

$$y(t,\omega) := e^{B_t(\omega)V} y_0$$

is the SDE solution. Proof: First order calculus.

• This is an ODE solution method for SDEs.

- Let B be a d-dimensional Brownian motion, d = 1.
- Let V be a nice vector field on \mathbb{R}^e
- Aim: find solution to SDE

$$dy = V(y) \partial dB.$$

• Let (e^{tV}) be the solution flow to the ODE $\dot{z} = V(z)$. Then

$$y(t,\omega) := e^{B_t(\omega)V} y_0$$

- This is an ODE solution method for SDEs.
- Benefit: solution depends in a robust way on B and y_0 .

- Let B be a d-dimensional Brownian motion, d = 1.
- Let V be a nice vector field on \mathbb{R}^e
- Aim: find solution to SDE

$$dy = V(y) \partial dB.$$

• Let (e^{tV}) be the solution flow to the ODE $\dot{z} = V(z)$. Then

$$y(t,\omega) := e^{B_t(\omega)V} y_0$$

- This is an ODE solution method for SDEs.
- Benefit: solution depends in a robust way on B and y_0 .
- A drift $V_0(y)dt$ can be incorporated (flow decomposition)

- Let B be a d-dimensional Brownian motion, d = 1.
- Let V be a nice vector field on \mathbb{R}^e
- Aim: find solution to SDE

$$dy = V(y) \partial dB.$$

• Let (e^{tV}) be the solution flow to the ODE $\dot{z} = V(z)$. Then

$$y(t,\omega) := e^{B_t(\omega)V} y_0$$

- This is an ODE solution method for SDEs.
- Benefit: solution depends in a robust way on B and y_0 .
- A drift $V_0(y)dt$ can be incorporated (flow decomposition)
- ... but this method fails when d > 1.

• So far, we have been interested in stochastic differential equations of the type

$$dy_{t}=\sum_{i=1}^{d}V_{i}\left(y_{t}
ight)\partial B_{t}^{i}$$

 So far, we have been interested in stochastic differential equations of the type

$$dy_{t}=\sum_{i=1}^{d}V_{i}\left(y_{t}
ight)\partial B_{t}^{i}$$

• Let us now look at such differential equations when B is replaced by some path $x \in C^1([0, 1], \mathbb{R}^d)$; that is

$$(*): \dot{y}_{t} = \sum_{i=1}^{d} V_{i}(y_{t}) \dot{x}_{t}$$

 So far, we have been interested in stochastic differential equations of the type

$$dy_{t}=\sum_{i=1}^{d}V_{i}\left(y_{t}
ight)\partial B_{t}^{i}$$

• Let us now look at such differential equations when B is replaced by some path $x \in C^1([0, 1], \mathbb{R}^d)$; that is

$$(*): \dot{y}_{t} = \sum_{i=1}^{d} V_{i}(y_{t}) \dot{x}_{t}$$

• This is a classical setup in system control theory ...

input signal $x \implies$ output signal y

 So far, we have been interested in stochastic differential equations of the type

$$dy_{t}=\sum_{i=1}^{d}V_{i}\left(y_{t}
ight)\partial B_{t}^{i}$$

• Let us now look at such differential equations when B is replaced by some path $x \in C^1([0,1], \mathbb{R}^d)$; that is

$$(*): \dot{y}_{t} = \sum_{i=1}^{d} V_{i}(y_{t}) \dot{x}_{t}$$

• This is a classical setup in system control theory ...

input signal $x \implies$ output signal y

• ... and in our case the system response is modelled by ODE (*).

 So far, we have been interested in stochastic differential equations of the type

$$dy_{t}=\sum_{i=1}^{d}V_{i}\left(y_{t}
ight)\partial B_{t}^{i}$$

• Let us now look at such differential equations when B is replaced by some path $x \in C^1([0,1], \mathbb{R}^d)$; that is

$$(*): \dot{y}_{t} = \sum_{i=1}^{d} V_{i}(y_{t}) \dot{x}_{t}$$

• This is a classical setup in system control theory ...

input signal $x \implies$ output signal y

- ... and in our case the system response is modelled by ODE (*).
- How would one simulate (*) on a computer?

• More precisely: $x \in C^1([0,1], \mathbb{R}^d)$, $V_1, ..., V_d \in C^{2,b}(\mathbb{R}^e, \mathbb{R}^e)$ $dy = V(y) dx \iff \dot{y} = V_i(y) \dot{x}^i$

(Summation over repeated indices!) Usual Euler-scheme:

$$y_t - y_s \approx V_i(y_s) \int_s^t dx^i$$
• More precisely: $x \in C^{1}([0,1], \mathbb{R}^{d})$, $V_{1}, ..., V_{d} \in C^{2,b}(\mathbb{R}^{e}, \mathbb{R}^{e})$ $dy = V(y) dx \iff \dot{y} = V_{i}(y) \dot{x}^{i}$

(Summation over repeated indices!) Usual Euler-scheme:

$$y_t - y_s \approx V_i(y_s) \int_s^t dx^d$$

Step-2 Euler scheme:

$$y_{t} - y_{s} \approx \underbrace{V_{i}\left(y_{s}\right) \int_{s}^{t} dx^{i} + V_{i}V_{j}\left(y_{s}\right) \int_{s}^{t} \int_{s}^{r} dx^{i}dx^{j}}_{=\mathcal{E}\left(y_{s}, \underline{\mathbf{x}}_{s,t}\right)}$$

with

$$\underline{\mathbf{x}}_{s,t} = \left(\int_s^t dx, \int_s^t \int_s^r dx \otimes dx\right) \in \mathbb{R}^d \oplus \mathbb{R}^{d \times d}.$$

• More precisely: $x \in C^{1}([0,1], \mathbb{R}^{d})$, $V_{1}, ..., V_{d} \in C^{2,b}(\mathbb{R}^{e}, \mathbb{R}^{e})$ $dy = V(y) dx \iff \dot{y} = V_{i}(y) \dot{x}^{i}$

(Summation over repeated indices!) Usual Euler-scheme:

$$y_t - y_s \approx V_i(y_s) \int_s^t dx^d$$

Step-2 Euler scheme:

$$y_{t} - y_{s} \approx \underbrace{V_{i}\left(y_{s}\right) \int_{s}^{t} dx^{i} + V_{i}V_{j}\left(y_{s}\right) \int_{s}^{t} \int_{s}^{r} dx^{i} dx^{j}}_{=\mathcal{E}\left(y_{s}, \underline{\mathbf{x}}_{s,t}\right)}$$

with

$$\underline{\mathbf{x}}_{s,t} = \left(\int_{s}^{t} dx, \int_{s}^{t} \int_{s}^{r} dx \otimes dx\right) \in \mathbb{R}^{d} \oplus \mathbb{R}^{d \times d}$$

• Natural scaling assumption. For some $\alpha \in (0, 1]$,

$$\left|\int_{s}^{t} dx^{i}\right| \vee \left|\int_{s}^{t} \int_{s}^{r} dx^{i} dx^{j}\right|^{1/2} \leq c_{1} |t-s|^{\alpha}$$

[Okay for BM with lpha < 1/2 but keep $x \in C^1$ for now \mathbb{R} .] () \mathbb{R}

P. K. Friz (TU Berlin and WIAS)

• Davie's Lemma: Error estimate on Step-2 Euler scheme

$$\left|y_{t}-y_{s}-\mathcal{E}\left(y_{s}, \mathbf{\underline{x}}_{s,t}
ight)
ight|\leq c_{2}\left|t-s
ight|^{ heta}$$

with $\theta = 3\alpha > 1 \implies$ need $\alpha > 1/3$ [Okay for BM ...]. The catch is uniformity

$$c_{2}=c_{2}\left(c_{1}
ight)~....~ ext{not}~c_{2}\left(\left|\dot{x}
ight|_{\infty}
ight)~ ext{or}~c_{2}\left(\left|x
ight|_{Lip}
ight)$$

• Davie's Lemma: Error estimate on Step-2 Euler scheme

$$\left|y_{t}-y_{s}-\mathcal{E}\left(y_{s}, \mathbf{\underline{x}}_{s,t}
ight)
ight|\leq c_{2}\left|t-s
ight|^{ heta}$$

with $\theta = 3\alpha > 1 \implies$ need $\alpha > 1/3$ [Okay for BM ...]. The catch is *uniformity*

$$c_{2}=c_{2}\left(c_{1}
ight)~....~ ext{not}~c_{2}\left(\left|\dot{x}
ight|_{\infty}
ight)~ ext{or}~c_{2}\left(\left|x
ight|_{Lip}
ight)$$

Easy to see that

$$egin{array}{rcl} {\cal E} \left(y_{s}, {f \underline{x}}_{s,t}
ight) &\leq c_{3} \left| t - s
ight|^{lpha}, & c_{3} = c_{3} \left(c_{1}
ight) \ \left| y_{t} - y_{s}
ight| &\leq c_{4} \left| t - s
ight|^{lpha}, & c_{4} = c_{4} \left(c_{1}
ight). \end{array}$$

• Davie's Lemma: Error estimate on Step-2 Euler scheme

$$\left|y_{t}-y_{s}-\mathcal{E}\left(y_{s}, \mathbf{\underline{x}}_{s,t}
ight)
ight|\leq c_{2}\left|t-s
ight|^{ heta}$$

with $\theta = 3\alpha > 1 \implies$ need $\alpha > 1/3$ [Okay for BM ...]. The catch is uniformity

$$c_{2}=c_{2}\left(c_{1}
ight)~....~ ext{not}~c_{2}\left(\left|\dot{x}
ight|_{\infty}
ight)~ ext{or}~c_{2}\left(\left|x
ight|_{Lip}
ight)$$

Easy to see that

$$\begin{array}{rcl} \mathcal{E}\left(y_{s},\underline{\mathbf{x}}_{s,t}\right) &\leq & c_{3}\left|t-s\right|^{\alpha}, & c_{3}=c_{3}\left(c_{1}\right) \\ & \left|y_{t}-y_{s}\right| &\leq & c_{4}\left|t-s\right|^{\alpha}, & c_{4}=c_{4}\left(c_{1}\right). \end{array}$$

• Take $x_n \in \mathcal{C}^1\left([0,1],\mathbb{R}^d
ight)$ with uniform bounds

$$\sup_{n} \left| \int_{s}^{t} dx_{n}^{i} \right| \vee \left| \int_{s}^{t} \int_{s}^{r} dx_{n}^{i} dx_{n}^{j} \right|^{1/2} \leq c_{1} |t-s|^{\alpha}$$

s.t. x_n + iterated integrals converge (pointwise) to

$$\underline{\mathbf{x}}_t = \left(\underline{\mathbf{x}}_t^{(1)}, \underline{\mathbf{x}}_t^{(2)}\right) \in \mathbb{R}^d \oplus \mathbb{R}^{d \times d};$$

then call $t \mapsto \underline{\mathbf{x}}_t$ a *(geometric) rough path.*

• Apply Davie's lemma: get $\{y_n\}$ with uniform Hölder bound c_4 .

___ ▶

• Apply Davie's lemma: get $\{y_n\}$ with uniform Hölder bound c_4 .

Arzela-Ascoli ⇒ {y_n : n ≥ 1} has limit points ... call them *RDE solutions*

- Apply Davie's lemma: get $\{y_n\}$ with uniform Hölder bound c_4 .
- Arzela-Ascoli ⇒ {y_n : n ≥ 1} has limit points
 ... call them *RDE solutions*
- More regularity + a bit work $\implies \exists! \text{ RDE solution } y \equiv \Phi(\underline{\mathbf{x}}; y_0)$ and write

$$dy = V(y) d\mathbf{\underline{x}}$$

- Apply Davie's lemma: get $\{y_n\}$ with uniform Hölder bound c_4 .
- Arzela-Ascoli ⇒ {y_n : n ≥ 1} has limit points
 ... call them *RDE solutions*
- More regularity + a bit work $\implies \exists! \text{ RDE solution } y \equiv \Phi(\underline{\mathbf{x}}; y_0)$ and write

$$dy = V(y) d\mathbf{\underline{x}}$$

• Various useful extensions ...

- Apply Davie's lemma: get $\{y_n\}$ with uniform Hölder bound c_4 .
- Arzela-Ascoli ⇒ {y_n : n ≥ 1} has limit points
 ... call them *RDE solutions*
- More regularity + a bit work $\implies \exists! \text{ RDE solution } y \equiv \Phi(\underline{\mathbf{x}}; y_0)$ and write

$$dy = V(y) d\mathbf{\underline{x}}$$

- Various useful extensions ...
 - Error estimates for step-N Euler schemes [F-Victoir , JDE 07]

- Apply Davie's lemma: get $\{y_n\}$ with uniform Hölder bound c_4 .
- Arzela-Ascoli ⇒ {y_n : n ≥ 1} has limit points
 ... call them *RDE solutions*
- More regularity + a bit work $\implies \exists! \text{ RDE solution } y \equiv \Phi(\underline{\mathbf{x}}; y_0)$ and write

$$dy = V\left(y
ight) d\mathbf{\underline{x}}$$

- Various useful extensions ...
 - Error estimates for step-*N* Euler schemes [F-Victoir , JDE 07]
 - RDE smoothness and Malliavin calculus [Cass-F, Annals of Math 09]

- Apply Davie's lemma: get $\{y_n\}$ with uniform Hölder bound c_4 .
- Arzela-Ascoli ⇒ {y_n : n ≥ 1} has limit points
 ... call them *RDE solutions*
- More regularity + a bit work $\implies \exists! \text{ RDE solution } y \equiv \Phi(\underline{\mathbf{x}}; y_0)$ and write

$$dy = V(y) d\mathbf{\underline{x}}$$

- Various useful extensions ...
 - Error estimates for step-N Euler schemes [F-Victoir , JDE 07]
 - RDE smoothness and Malliavin calculus [Cass-F, Annals of Math 09]
 - Continuity of Φ as flow of diffeomorphisms [Caruana-F, JDE 08]

- Apply Davie's lemma: get $\{y_n\}$ with uniform Hölder bound c_4 .
- Arzela-Ascoli ⇒ {y_n : n ≥ 1} has limit points
 ... call them *RDE solutions*
- More regularity + a bit work $\implies \exists! \text{ RDE solution } y \equiv \Phi(\underline{\mathbf{x}}; y_0)$ and write

$$dy = V(y) d\mathbf{\underline{x}}$$

- Various useful extensions ...
 - Error estimates for step-N Euler schemes [F-Victoir , JDE 07]
 - RDE smoothness and Malliavin calculus [Cass-F, Annals of Math 09]
 - Continuity of Φ as flow of diffeomorphisms [Caruana-F, JDE 08]
 - Rough partial differential equations [Caruana-F-Oberhauser ...]

• **ODEs:** For a smooth driving signal, RDEs are just ODEs. Even here, continuity statements are powerful.

Examples of RDEs

- **ODEs:** For a smooth driving signal, RDEs are just ODEs. Even here, continuity statements are powerful.
- As example, consider

$$\dot{y} = V_1(y) + V_2(y) \Longleftrightarrow dy = V_1(y) dt + V_2(y) dt;$$

we immediately get the (splitting) result

$$e^{\frac{1}{n}V_2} \circ e^{\frac{1}{n}V_1} \circ \cdots \circ e^{\frac{1}{n}V_2} \circ e^{\frac{1}{n}V_1} \rightarrow e^{V_1+V_2}$$

where e^{tW} denotes the solution flow to $\dot{z} = W(z)$.

Examples of RDEs

- **ODEs:** For a smooth driving signal, RDEs are just ODEs. Even here, continuity statements are powerful.
- As example, consider

$$\dot{y} = V_1(y) + V_2(y) \Longleftrightarrow dy = V_1(y) dt + V_2(y) dt;$$

we immediately get the (splitting) result

$$e^{\frac{1}{n}V_2} \circ e^{\frac{1}{n}V_1} \circ \cdots \circ e^{\frac{1}{n}V_2} \circ e^{\frac{1}{n}V_1} \rightarrow e^{V_1+V_2}$$

where e^{tW} denotes the solution flow to $\dot{z} = W(z)$.

• Indeed, it suffices to approximation the diagonal $t\mapsto (t,t)$ by a 1/n - step function

Examples of RDEs

- **ODEs:** For a smooth driving signal, RDEs are just ODEs. Even here, continuity statements are powerful.
- As example, consider

$$\dot{y} = V_1(y) + V_2(y) \Longleftrightarrow dy = V_1(y) dt + V_2(y) dt;$$

we immediately get the (splitting) result

$$e^{\frac{1}{n}V_2} \circ e^{\frac{1}{n}V_1} \circ \cdots \circ e^{\frac{1}{n}V_2} \circ e^{\frac{1}{n}V_1} \to e^{V_1+V_2}$$

where e^{tW} denotes the solution flow to $\dot{z} = W(z)$.

- Indeed, it suffices to approximation the diagonal $t\mapsto (t,t)$ by a 1/n step function
- This approximation converges with uniform 1-Hölder (i.e. Lipschitz) bounds

• Differential equations driven by pure area:

$$t\mapsto \mathbf{\underline{x}}_t\equiv \left(egin{array}{cc} 0 & , \left(egin{array}{cc} 0 & t \ -t & 0 \end{array}
ight)
ight)$$

is the limit (with uniform 1/2-Hölder bounds ...) of the highly oscillatory

$$x_{n}(t) = n^{-1} \exp\left(2\pi i n^{2} t\right) \in \mathbb{C} \cong \mathbb{R}^{2}.$$

Given two vector fields $V = (V_1, V_2)$ the RDE solution

$$dy = V(y) \, d\underline{\mathbf{x}} \tag{1}$$

models the effective behaviour of the highly oscillatory ODE

$$dy^n = V(y^n) dx^n$$
 as $n \to \infty$.

In fact, the RDE solution of (1) solves the ODE

$$\dot{y} = \left[\textit{V}_{1},\textit{V}_{2}
ight] (y)$$

where $[V_1, V_2]$ is the Lie bracket of V_1 and V_2 .

 Stochastic differential equations: Let B be d-dimensional Brownian motion. Since B (ω) ∉ C¹ careful interpretation of the stochastic differential equation

$$dy = V(y) \partial B$$

is necessary (Itô-theory). Define enhanced Brownian motion

$$\underline{\mathbf{B}}_{t}\left(\omega\right) = \left(B_{t}, \int_{0}^{t} B_{s} \otimes \partial B_{s}\right)$$

where ∂ indicates (Stratonovich) stochastic integration. Then

 $\mathbb{P}\left[\mathbf{\underline{B}} \text{ is a geometric rough path}\right] = 1.$

In fact, martingale arguments shows that $\underline{\mathbf{B}}(\omega)$ is the limit of piecewise linear approximations (with uniform $(1/2 - \varepsilon)$ -Hölder bounds ...).

• RDE solution to $dy = V(y) d\mathbf{\underline{B}}$ is solved for fixed ω , depends continuously on $\mathbf{\underline{B}}$ and yields a (classical) Stratonovich SDE solution

. . .

• Caution: topology matters. Possible that, uniformly in t,

$$\left(B_t^{(n)},\int_0^t B_s^{(n)}\otimes dB_s^{(n)}\right)\to \left(B_t,\int_0^t B_s\otimes \partial B_s\right)$$

while DE solutions converge to the "wrong" limit.

• Caution: topology matters. Possible that, uniformly in t,

$$\left(B_t^{(n)}, \int_0^t B_s^{(n)} \otimes dB_s^{(n)}\right) \to \left(B_t, \int_0^t B_s \otimes \partial B_s\right)$$

while DE solutions converge to the "wrong" limit.

• Key to understanding: view <u>B</u> as level-*N* rough path; [F-Oberhauser, JFA 09]

• Caution: topology matters. Possible that, uniformly in t,

$$\left(B_t^{(n)}, \int_0^t B_s^{(n)} \otimes dB_s^{(n)}\right) \to \left(B_t, \int_0^t B_s \otimes \partial B_s\right)$$

while DE solutions converge to the "wrong" limit.

- Key to understanding: view <u>B</u> as level-N rough path; [F-Oberhauser, JFA 09]
- By rough path continuity, this would *not* happen if, for some $\alpha \in (1/3, 1/2]$,

$$\left|\int_{s}^{t} dB_{t}^{(n)}\right| \vee \left|\int_{s}^{t} \int_{s}^{r} dB_{s}^{(n)} \otimes dB_{s}^{(n)}\right|^{1/2} \leq C(\omega) |t-s|^{\alpha}.$$

Differential equations with non-Brownian noise

• Recall BM = martingale, Gaussian, Markov

Differential equations with non-Brownian noise

- Recall BM = martingale, Gaussian, Markov
- SDE theory with (semi)martingale noise follows Itô's approach and is well-known

- Recall BM = martingale, Gaussian, Markov
- SDE theory with (semi)martingale noise follows Itô's approach and is well-known
- SDE theory with Gaussian noise is: previous to rough path theory restricted to special examples (e.g. fractional Brownian motion)

- Recall BM = martingale, Gaussian, Markov
- SDE theory with (semi)martingale noise follows Itô's approach and is well-known
- SDE theory with Gaussian noise is: previous to rough path theory restricted to special examples (e.g. fractional Brownian motion)
- SDE theory with Markovian noise: previous to rough path theory, hardly anything

- Recall BM = martingale, Gaussian, Markov
- SDE theory with (semi)martingale noise follows Itô's approach and is well-known
- SDE theory with Gaussian noise is: previous to rough path theory restricted to special examples (e.g. fractional Brownian motion)
- SDE theory with Markovian noise: previous to rough path theory, hardly anything
- Thanks to rough path theory: large and natural classes of the above processes can be lifted to rough paths with resulting path-by-path stochastic differential equations.

• For $x \in C^1([0,1], \mathbb{R}^d)$, $x_0 = 0$, define generalized increments $\underline{\mathbf{x}}_{s,t} = \left(1, \int_s^t dx, \int_s^t \int_s^r dx \otimes dx\right) \in \mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}, \quad 0 \le s \le t \le 1$

• For $x \in C^1([0,1], \mathbb{R}^d)$, $x_0 = 0$, define generalized increments $\underline{\mathbf{x}}_{s,t} = \left(1, \int_s^t dx, \int_s^t \int_s^r dx \otimes dx\right) \in \mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}, \quad 0 \le s \le t \le 1$

• The (vector) space $\mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$ with basis $(1, b^i, b^{jk}; 1 \le i, j, k \le d)$ has (truncated tensor) algebra structure; e.g.

$$2b^1 \otimes (4-3b^2) = 8b^1 - 6b^{12}$$

• For $x \in C^1([0,1], \mathbb{R}^d)$, $x_0 = 0$, define generalized increments $\underline{\mathbf{x}}_{s,t} = \left(1, \int_s^t dx, \int_s^t \int_s^r dx \otimes dx\right) \in \mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}, \quad 0 \le s \le t \le 1$

• The (vector) space $\mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$ with basis $(1, b^i, b^{jk}; 1 \le i, j, k \le d)$ has (truncated tensor) algebra structure; e.g.

$$2b^1 \otimes (4-3b^2) = 8b^1 - 6b^{12}$$

• $\underline{\mathbf{x}}_{s,t} \in \mathcal{T}_1 := \{1\} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$ and $(\mathcal{T}_1, \otimes, 1)$ is a Lie group

$$\mathcal{T}_1 = \exp\left(\mathbb{R}^d \oplus \mathbb{R}^{d imes d}
ight)$$

• For $x \in C^1([0,1], \mathbb{R}^d)$, $x_0 = 0$, define generalized increments $\underline{\mathbf{x}}_{s,t} = \left(1, \int_s^t dx, \int_s^t \int_s^r dx \otimes dx\right) \in \mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}, \quad 0 \le s \le t \le 1$

• The (vector) space $\mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$ with basis $(1, b^i, b^{jk}; 1 \le i, j, k \le d)$ has (truncated tensor) algebra structure; e.g.

$$2b^1 \otimes (4-3b^2) = 8b^1 - 6b^{12}$$

• $\underline{\mathbf{x}}_{s,t} \in \mathcal{T}_1 := \{1\} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$ and $(\mathcal{T}_1, \otimes, 1)$ is a Lie group $\mathcal{T}_1 = \exp\left(\mathbb{R}^d \oplus \mathbb{R}^{d \times d}\right)$

• Non-linear key identity [Chen '37]

$$\underline{\mathbf{x}}_{s,t} \otimes \underline{\mathbf{x}}_{t,u} = \underline{\mathbf{x}}_{s,u}, \ 0 \leq s \leq t \leq u \leq 1.$$

$$\operatorname{Sym}\left(\int_{s}^{t}\int_{s}^{r}dx\otimes dx\right)=\frac{1}{2}\left(\int_{s}^{t}dx\right)\otimes\left(\int_{s}^{t}dx\right)$$

 $G = \exp\left(\mathbb{R}^d \oplus so(d)\right)$ is (a realization of) step-2 nilpotent Lie group with d generators

$$\mathsf{Sym}\left(\int_{s}^{t}\int_{s}^{r}dx\otimes dx\right)=\frac{1}{2}\left(\int_{s}^{t}dx\right)\otimes\left(\int_{s}^{t}dx\right)$$

 $G = \exp\left(\mathbb{R}^d \oplus so(d)\right)$ is (a realization of) step-2 nilpotent Lie group with d generators

• geometric interpretation of log $(\underline{\mathbf{x}}_{s,t})$: path- and area-increment

$$\mathsf{Sym}\left(\int_{s}^{t}\int_{s}^{r}dx\otimes dx\right)=\frac{1}{2}\left(\int_{s}^{t}dx\right)\otimes\left(\int_{s}^{t}dx\right)$$

 $G = \exp\left(\mathbb{R}^d \oplus so(d)\right)$ is (a realization of) step-2 nilpotent Lie group with d generators

- geometric interpretation of log $(\underline{\mathbf{x}}_{s,t})$: path- and area-increment
- For d = 2, G isomorphic to the 3-dimensional Heisenberg group

$$\mathsf{Sym}\left(\int_{s}^{t}\int_{s}^{r}dx\otimes dx\right)=\frac{1}{2}\left(\int_{s}^{t}dx\right)\otimes\left(\int_{s}^{t}dx\right)$$

 $G = \exp\left(\mathbb{R}^d \oplus so\left(d\right)\right)$ is (a realization of) step-2 nilpotent Lie group with d generators

- geometric interpretation of log $(\underline{\mathbf{x}}_{s,t})$: path- and area-increment
- For d = 2, G isomorphic to the 3-dimensional Heisenberg group
- Familiar concepts (scalar product, norm) generalize

$$\mathsf{Sym}\left(\int_{s}^{t}\int_{s}^{r}dx\otimes dx\right)=\frac{1}{2}\left(\int_{s}^{t}dx\right)\otimes\left(\int_{s}^{t}dx\right)$$

 $G = \exp\left(\mathbb{R}^d \oplus so(d)\right)$ is (a realization of) step-2 nilpotent Lie group with d generators

- geometric interpretation of log $(\underline{\mathbf{x}}_{s,t})$: path- and area-increment
- For d = 2, G isomorphic to the 3-dimensional Heisenberg group
- Familiar concepts (scalar product, norm) generalize

• Dilation
$$\delta_{\lambda} (1 + v + M) = 1 + \lambda v + \lambda^2 M$$
• Actually, $\underline{\mathbf{x}}_{s,t} \in G := \exp\left(\mathbb{R}^{d} \oplus \textit{so}\left(d\right)\right)$ since (1st order calculus!)

$$\mathsf{Sym}\left(\int_{s}^{t}\int_{s}^{r}dx\otimes dx\right)=\frac{1}{2}\left(\int_{s}^{t}dx\right)\otimes\left(\int_{s}^{t}dx\right)$$

 $G = \exp\left(\mathbb{R}^d \oplus so(d)\right)$ is (a realization of) step-2 nilpotent Lie group with d generators

- geometric interpretation of log $(\underline{\mathbf{x}}_{s,t})$: path- and area-increment
- For d = 2, G isomorphic to the 3-dimensional Heisenberg group
- Familiar concepts (scalar product, norm) generalize
 - Dilation $\delta_{\lambda} (1 + v + M) = 1 + \lambda v + \lambda^2 M$
 - Carnot-Carathoedory norm: $\|1 + v + M\|_{CC} \sim |v| \lor |M|^{1/2} \sim |v| \lor |Anti(M)|^{1/2}$

• Actually, $\underline{\mathbf{x}}_{s,t} \in G := \exp\left(\mathbb{R}^{d} \oplus \textit{so}\left(d\right)\right)$ since (1st order calculus!)

$$\mathsf{Sym}\left(\int_{s}^{t}\int_{s}^{r}dx\otimes dx\right)=\frac{1}{2}\left(\int_{s}^{t}dx\right)\otimes\left(\int_{s}^{t}dx\right)$$

 $G = \exp\left(\mathbb{R}^d \oplus so\left(d\right)\right)$ is (a realization of) step-2 nilpotent Lie group with d generators

- geometric interpretation of log $(\underline{\mathbf{x}}_{s,t})$: path- and area-increment
- For d = 2, G isomorphic to the 3-dimensional Heisenberg group
- Familiar concepts (scalar product, norm) generalize
 - Dilation $\delta_{\lambda} (1 + v + M) = 1 + \lambda v + \lambda^2 M$
 - Carnot-Carathoedory norm: $\|1 + v + M\|_{CC} \sim |v| \lor |M|^{1/2} \sim |v| \lor |Anti(M)|^{1/2}$

• $\underline{\mathbf{x}}_t := \underline{\mathbf{x}}_{0,t}$ defines a *G*-valued path (which lifts *x*) and $\underline{\mathbf{x}}_{s,t} = \underline{\mathbf{x}}_s^{-1} \otimes \underline{\mathbf{x}}_t$

• Recall our assumption in Davie's lemma:

$$\left|\int_{s}^{t}dx\right| \vee \left|\int_{s}^{t}\int_{s}^{r}dx\otimes dx\right|^{1/2} \le c_{1}|t-s|^{lpha}$$

... this says precisely that $t \mapsto \underline{\mathbf{x}}_t$ is a Hölder continuous path, with exponent α , in the space G with Carnot-Caratheodory metric

$$d_{CC}\left(\underline{\mathbf{x}}_{s},\underline{\mathbf{x}}_{t}\right) := \left\|\underline{\mathbf{x}}_{s}^{-1} \otimes \underline{\mathbf{x}}_{t}\right\|_{CC} = \left\|\underline{\mathbf{x}}_{s,t}\right\|_{CC}.$$

• Recall our assumption in Davie's lemma:

$$\left|\int_{s}^{t}dx\right| \vee \left|\int_{s}^{t}\int_{s}^{r}dx\otimes dx\right|^{1/2} \le c_{1}|t-s|^{lpha}$$

... this says precisely that $t \mapsto \underline{\mathbf{x}}_t$ is a Hölder continuous path, with exponent α , in the space G with Carnot-Caratheodory metric

$$d_{CC}\left(\underline{\mathbf{x}}_{s},\underline{\mathbf{x}}_{t}\right) := \left\|\underline{\mathbf{x}}_{s}^{-1} \otimes \underline{\mathbf{x}}_{t}\right\|_{CC} = \left\|\underline{\mathbf{x}}_{s,t}\right\|_{CC}.$$

 The space of all (α-Hölder, geometric) rough paths [previously introduced as pointwise limits of C¹-paths + iterated integrals subject to uniform α-Hölder bounds] is precisely

$$\left\{\underline{\mathbf{x}} \in C\left(\left[0,1\right], G\right) : \sup_{0 \le s < t \le 1} \frac{d_{CC}\left(\underline{\mathbf{x}}_{s}, \underline{\mathbf{x}}_{t}\right)}{\left|t-s\right|^{\alpha}} < \infty\right\}$$

• Recall our assumption in Davie's lemma:

$$\left|\int_{s}^{t}dx\right|\vee\left|\int_{s}^{t}\int_{s}^{r}dx\otimes dx\right|^{1/2} \leq c_{1}|t-s|^{lpha}$$

... this says precisely that $t \mapsto \underline{\mathbf{x}}_t$ is a Hölder continuous path, with exponent α , in the space G with Carnot-Caratheodory metric

$$d_{CC}\left(\underline{\mathbf{x}}_{s},\underline{\mathbf{x}}_{t}\right) := \left\|\underline{\mathbf{x}}_{s}^{-1} \otimes \underline{\mathbf{x}}_{t}\right\|_{CC} = \left\|\underline{\mathbf{x}}_{s,t}\right\|_{CC}.$$

 The space of all (α-Hölder, geometric) rough paths [previously introduced as pointwise limits of C¹-paths + iterated integrals subject to uniform α-Hölder bounds] is precisely

$$\left\{\underline{\mathbf{x}} \in C\left(\left[0,1\right],G\right): \sup_{0 \le s < t \le 1} \frac{d_{CC}\left(\underline{\mathbf{x}}_{s},\underline{\mathbf{x}}_{t}\right)}{\left|t-s\right|^{\alpha}} < \infty\right\}$$

• Very convenient! E.g. to show rough path regularity of $\underline{\mathbf{B}}_{t}\left(\omega\right)$...

• **Theorem [Donsker '52]** Under finite second moment assumptions, renormalized random walk in \mathbb{R}^d converges weakly (in sup-topology) to BM.

- **Theorem [Donsker '52]** Under finite second moment assumptions, renormalized random walk in \mathbb{R}^d converges weakly (in sup-topology) to BM.
- Theorem [Lamperti '62] Assuming finite moments of all order, convergence holds in α-Hölder topology, any α < 1/2.

- **Theorem [Donsker '52]** Under finite second moment assumptions, renormalized random walk in \mathbb{R}^d converges weakly (in sup-topology) to BM.
- Theorem [Lamperti '62] Assuming finite moments of all order, convergence holds in α-Hölder topology, any α < 1/2.
- Theorem [Breuillard-F-Huessman, Proc. AMS '09] Under previous assumptions, convergence holds in α -Hölder rough path topology, $\alpha < 1/2$.

- **Theorem [Donsker '52]** Under finite second moment assumptions, renormalized random walk in \mathbb{R}^d converges weakly (in sup-topology) to BM.
- Theorem [Lamperti '62] Assuming finite moments of all order, convergence holds in α-Hölder topology, any α < 1/2.
- Theorem [Breuillard-F-Huessman, Proc. AMS '09] Under previous assumptions, convergence holds in α -Hölder rough path topology, $\alpha < 1/2$.
- **Corollary:** Universal limit theorem for Markov chain approximations to stochastic differential equations.

- Sketch of proof:
- Random walk can be viewed as random walk (ξ_i) on the step-2 free nilpotent group.

- Sketch of proof:
- Random walk can be viewed as random walk (ξ_i) on the step-2 free nilpotent group.
- Convergence of f.d.d. follows from a CLT on free nilpotent groups.

- Sketch of proof:
- Random walk can be viewed as random walk (ξ_i) on the step-2 free nilpotent group.
- Convergence of f.d.d. follows from a CLT on free nilpotent groups.
- Remains to establish tightness in α -Hölder rough path topology:

- Sketch of proof:
- Random walk can be viewed as random walk (ξ_i) on the step-2 free nilpotent group.
- Convergence of f.d.d. follows from a CLT on free nilpotent groups.
- Remains to establish tightness in α -Hölder rough path topology:
- Boils down to showing

$$\forall p < \infty : \mathbb{E}\left[\left\| \boldsymbol{\xi}_1 * \cdots * \boldsymbol{\xi}_k \right\|_{CC}^{4p} \right] = O\left(k^{2p}\right).$$

- If you want to read more about this:
- [Lyons, Qian '02]: System control and rough paths, Oxford Univ. Press

- If you want to read more about this:
- [Lyons, Qian '02]: System control and rough paths, Oxford Univ. Press
- [Caruana, Levy, Lyons '05]: Differential equations driven by rough paths, St. Flours lecture

- If you want to read more about this:
- **[Lyons, Qian '02]:** System control and rough paths, Oxford Univ. Press
- [Caruana, Levy, Lyons '05]: Differential equations driven by rough paths, St. Flours lecture
- ... google "st_flour" and find Lyons' handwritten St. Flour notes

- If you want to read more about this:
- **[Lyons, Qian '02]:** System control and rough paths, Oxford Univ. Press
- [Caruana, Levy, Lyons '05]: Differential equations driven by rough paths, St. Flours lecture
- ... google "st_flour" and find Lyons' handwritten St. Flour notes
- [Friz, Victoir '10]: Multidimensional stochastic processes as rough paths, Cambridge Univ. Press

- If you want to read more about this:
- **[Lyons, Qian '02]:** System control and rough paths, Oxford Univ. Press
- [Caruana, Levy, Lyons '05]: Differential equations driven by rough paths, St. Flours lecture
- ... google "st_flour" and find Lyons' handwritten St. Flour notes
- [Friz, Victoir '10]: Multidimensional stochastic processes as rough paths, Cambridge Univ. Press
- ... download the pdf from my homepage