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“A generating function is a clothesline on which we hang up a
sequence of numbers for display.”

H.S.Wilf
generatingfunctionology

Academic Press Inc., 1990



Partitions

Let p(n) denote the number of partitions of the integer n, i.e.,
p(n) is the number of ways we can write n = n1 + n2 + . . .,
where n1 ≥ n2 ≥ · · · > 0.

Then p(n) is clearly the coefficient of qn in the power series
expansion of the product

(1 + q + q2 + · · · )(1 + q2 + q4 + · · · ) · · · (1 + qm + q2m + · · · ) · · ·

= 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + 15q7 + 22q8 + · · ·

The generating function of integer partitions is

f(q) =
∑
n≥0

p(n) qn =
∏
m≥1

(1− qm)−1

(all this goes back to Euler).



If we instead look at

(1 + q+ q2 + · · · )(1 + q2 + q4 + · · · )2 · · · (1 + qm + q2m + · · · )m · · ·

it turns out that the coefficient of qn in the expansion is the
number of plane partitions (or 3D Young diagrams) of n.

So the generating function for this problem is the MacMahon
function

M(q) =
∏
m≥1

(1− qm)−m,

M(q) = 1 + q + 3q2 + 6q3 + 13q4 + 24q5 + · · ·



Recursions

If a sequence of numbers is defined recursively, we might be able
to find the generating functions, and maybe even a closed
formula for the numbers.

Let F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2. Then∑
Fn q

n = q +
∑

Fn−1 q
n +

∑
Fn−2 q

n

Hence the generating function for the Fibonacci numbers is

f(q) =
∑

Fnq
n =

q

1− q − q2

and Fn = 1√
5

(
ϕn − (1− ϕ)n

)
, where ϕ = 1

2(1 +
√

5) is the
golden ratio.



Enumerative geometry

Unlike the case of enumerative combinatorics, generating
functions did not use to play a prominent role in enumerative
geometry. One reason is that there often are not natural
sequences that need to be displayed, rather one looks for
specific numbers, or general formulas.

Schubert calculus: Enumerate linear spaces in a given
projective space satisfying a certain number of incidence
conditions with other linear spaces.

Example

How many lines intersect four given lines in P3?



Plane rational curves

Let Nd denote the number of plane rational curves of degree d
passing through 3d− 1 given points.

Kontsevich’s recursion formula:

Nd =
∑

d1+d2=d

Nd1Nd2

(
d2

1d
2
2

(
3d− 4
3d1 − 2

)
− d3

1d2

(
3d− 4
3d1 − 1

))
What can we say about the generating function

f(q) =
∑
d

Nd q
d ?

or the exponential generating function

f(q) =
∑
d

Nd q
d/d! ?



To display on the clothesline?



The sequence of numbers

N1 = 1
N2 = 1
N3 = 12
N4 = 620
N5 = 87304

N6 = 26312976
N7 = 14616808192

N8 = 13525751027392
N9 = 19385778269260800

N10 = 40739017561997799680
N11 = 120278021410937387514880

N12 = 482113680618029292368686080



Curves on Calabi–Yau threefolds

Clemens’ conjecture: There are only finitely many rational
curves of degree d on a general quintic hypersurface in P4.

(Proved for d ≤ 10 by Clemens, Katz, Kleiman–Johnsen,
Cotterill.)

The physicists enter the scene:
In string theory, rational curves on Calabi–Yau threefolds are
instantons. Using the principle of mirror symmetry, curves on a
Calabi–Yau threefold (such as the quintic) can be counted by
computing integrals on the mirror manifold. This way
Candelas, de la Ossa, Green, and Parkes predicted the
generating function of the Clemens problem!

Gromov–Witten invariants “replaced” the numbers of curves,
and this way the theory was made sound.



Curves on a K3 surface

The 2-dimensional analogue of a CY threefold is a K3 surface,
for example a quartic surface S ⊂ P3.

Let C ⊂ S be a curve, n = C2/2 + 1, and set

Nn := #{n-nodal rational curves in |C|}.

The generating function is (Yau–Zaslow, Bryan–Leung)

f(q) =
∑
n

Nn q
n =

∏
m

(1− qm)−24 =
(∏
m

(1− qm)−1
)χ(S)

where χ(S) is the (topological) Euler characteristique of S.

WHY??



Reduce to combinatorics!

Degenerate the pair (C, S) to (C ′, S′), where S′ → P1 is an
elliptic fibration with 24 nodal (hence rational) fibers Fj , and
|C ′| = |s(P1) + nF |, where F is a fiber.

Hence the solutions in the degenerate case is equal to the
number of curves of the form s(P1) +

∑24
j=1 ajFj , with

n = a1 + · · ·+ a24.

Each degenerate solution comes with a weight: there are p(aj)
ways to cover Fj aj-fold by ≤ aj P1’s, hence each degenerate
solution has weight p(a1) · · · p(a24), and

Nn =
∑

a1+···+a24=n

p(a1) · · · p(a24)



And what about MacMahon?

The number of partitions p(n) is the same as the number of
Ferrers–Young diagrams of size n and their generating function
appears in the count of curves on K3 surfaces. So the
generating function of plane partitions, or 3D Young diagrams,
should appear when counting curves on three-dimensional
Calabi–Yau varieties?? Behrend–Bryan–Szendroi: “. . . the
MacMahon function . . . whose appearance permeats
Donaldson–Thomas theory.”

For example,∑
n≥0

DTn(C3) qn =
∏
m≥1

(1− (−q)m)−m = M(−q)

It is conjectured that for a Calabi–Yau threefold X,

ZDT,0(q) = M(−q)χ(X)

and there are further refinements, conjectures and theorems.



Curves on surfaces (joint with Steven Kleiman)

Let S be a smooth projective surface, Y = |C] a linear system.
Let nr denote the number of r-nodal curves in the system
passing through dimY − r given points. The Chern numbers are
m = C2, k = KS · C, s = K2

S , and x = c2(S).

We (and everybody) conjectured (based on Vainsencher’s work)
that there should exist universal polynomials φr – the node
polynomials – of degree r such that nr = φr(m, k, s, x).

Göttsche’s conjectured that the generating function can be
expressed in terms of three quasimodular forms and two
universal (but unknown) power series. This has been proved, as
we have seen, for K3 surfaces (the only quasimodular function
appearing in genus 0 for a K3 is the discriminant), and also for
abelian surfaces.



Plane curves revisited

In the case of plane curves of degree d, the Chern numbers are

m = d2, k = −3d, s = 9, x = 3.

The nr seem to be polynomials in d of degree 2r:

n1 = 3d2 − 6d+ 3
n2 = 9

2d
4 − 18d3 + 6d2 + 81

2 d− 33
n3 = 9

2d
6 − 27d5 + 9

2d
4 + 423

2 d3 − 229d2 − 829
2 d+ 525

n4 = 27
8 d

8 − 27d7 + 1809
4 d5 − 642d4 − 2529d3 + 37881

8 d2

+18057
4 d− 8865

n5 = 81
40d

10 − 81
4 d

9 − 27
8 d

8 + 2349
4 d7 − 1044d6 − 127071

20 d5

+128859
8 d4 + 59097

2 d3 − 3528381
40 d2 − 946929

20 d+ 153513

(Further conjectures by Di Francesco–Itzykson, Göttsche, and
Qviller.)



Combinatorial proof?

Yes, by translation to tropical curves, Fomin–Mikhalkin have
proved that the nr are indeed polynomials in d of degree 2r.
They reduce the count to that of labeled floor diagrams.

Theorem (F–M). For any fixed r, there exists a polynomial
Qr(d) ∈ Q[d] of degree 2r and a threshold value d0(r) such that
for d ≥ d0(r), we have Nr = Qr(d).

They give the threshold d0(r) = 2r (but say they can do better)
– the conjectured threshold is d0(r) = r/2 + 1 (we prove it for
r ≤ 8).



Back to the general case

Consider a family of curves D ⊂ F = S × Y on S, and the
classes d, k, s, x on Y analogous to the Chern numbers. We are
looking for the class ur on Y that enumerates r-nodal curves in
the family.

By blowing up the family F along a section, we obtain, by
restriction, a family of curves on the family of blown up
surfaces, with one node less. To get the expression for ur, we
can push down the expression for ur−1 of the new family. Since
there are r nodes in each r-nodal curve, there are r ways to
blow up:

r ur = ur−1u1 +Dur−1

where Dur−1 is a “correction term.”



u1 = u1

2u2 = u2
1 +Du1

3!u3 = (u2
1 +Du1)u1 + 2Du2

= u3
1 + u1Du1 +D(u2

1 +Du1)
= u3

1 + 3u1Du1 +D2u1

Is Faà di Bruno hiding here somewhere?

Set a1 = u1, a2 = Du1, a3 = D2u1:

u1 = a1

2u2 = a2
1 + a2

3!u3 = a3
1 + 3a1a2 + a3



Yes, but it is really Bell whom we found!

The (complete exponential) Bell polynomials can be recursively
defined as

Pr+1(a1, . . . , ar+1) =
r∑
j=0

(
r

j

)
Pr−j(a1, . . . , ar−j)aj+1

or by the formal identity∑
r≥0

Pr(a1, . . . , ar) qr/r! = exp
∑
j≥1

ai q
i/i!

or

Pr(a1, . . . , ar) =
∑

k1+2k2···+rkr=r

r!
k1! · · · kr!

(a1

1!
)k1 · · · (ar

r!
)kr



A conjecture and a theorem

Conjecture. The generating function for nodal curves in a
given family of curves on a surface S can be written as∑

nr q
r =

∑ 1
r!
Pr(a1, . . . , ar) qr,

where the ai are linear combinations (computable from an
algorithm) of the Chern numbers of S and the curves C in the
family, and the Pi are the Bell polynomials.

Theorem. The conjecture is true for r ≤ 8.

An advantage of having a generating function of this form is
that we only need to compute one new term ar to pass from
nr−1 to nr.



The first eight ai

a1 = 3d+ 2k + x

a2 = −42d− 39k − 6s− 7x
a3 = 1380d+ 1576k + 376s+ 138x
a4 = −72360d− 95670k − 28842s− 3888x
a5 = 5225472d+ 7725168k + 2723400s+ 84384x
a6 = −481239360d− 778065120k − 308078520s+ 7918560x
a7 = 53917151040d+ 93895251840k + 40747613760s

−2465471520x
a8 = −7118400139200d− 13206119880240k − 6179605765200s

+516524964480x



Ingredients of proof

I The functor of infinitely near points on a family of surfaces
I Enriques diagrams of singularities of curves on a surface
I Zariski clusters and their representation in the Hilbert

scheme

We would of course like to enumerate curves in a family with
any given set of singularities.

Example

The number of curves with one triple point and one node,
passing through dimY − 5 points is

n(3, 2) = 45m2 + (15s+ 90k + 30x− 420)m+ 40k2

+(10s+ 30x− 624)k + (5x− 196)s+ 5x2 − 100x



Idea of the proof

A node (an ordinary double point) of a curve C on a
nonsingular surface S is resolved by blowing up the singular
point. The strict transform C − 2E of the given curve C will
thus have one fewer node than C.

Set Y = |C|, and consider the family of surfaces

π′ : F ′ → F = S × Y,

obtained by blowing up the diagonal in F ×Y F . The new
family is a family of surfaces Sx, where Sx is the blow up of S
in the point x.
Let X ⊂ F be the set of singular points of the curves C; then
the r-nodal curves in |C| correspond to (r − 1)-nodal curves in
|π′∗C − 2E|X . We get the r-nodal formula by pushing down the
(r − 1)-nodal formula, and hence can use induction on the
number r of nodes.



Curve singularities and Enriques diagrams

In the proof we also need to consider worse singularities.
Let x ∈ C ⊂ S be a singular point on a curve on a nonsingular
surface. The singularity can be resolved by a series of blowups,
and we get an associated weighted resolution graph (Enriques
diagram) D, which determines the topological type of the
singularity.

Examples of diagrams

•2 •2

A1 •
2

A3 •
2

A5 •
2

•
2

•1 •1

A2 •
2

•
1

A4 •
2

•
2

•
1



The functor of infinitely near points

Let S be a nonsingular surface and

S(n+1) → S(n) → · · · → S(0) = S

a sequence of blowups at centers ti ∈ S(i). Then (t0, . . . , tn) is
called a sequence of infinitely near points of S.

Theorem. Let F → Y be a family of surfaces. The sequences
of infinitely near T -points of F/Y form a functor, which is
represented by F (n)/Y , where F (n) is defined recursively by
letting F (i) → F (i−1) be the blow up of the diagonal in
F (i−1)×Y F (i−1), composed with projection on the second factor.
For each ordered diagram (D, θ), the subfunctor of sequences
with ordered diagram (D, θ) is represented by a subscheme
F (D, θ) ⊂ F (n), which is smooth over Y .



Zariski clusters and the Hilbert scheme

To each point x on the surface S and each diagram D, one can
associate an ideal in the local ring OS,x of finite colength equal
to the degree d of the diagram D. The corresponding “fat
point” (Zariski cluster) has the property that a curve containing
this fat point has a singularity of type D.

This gives a map Ψθ : F (D, θ)→ HilbdF/Y , which factors
through the quotient of the action of Aut(D).

Theorem. The map

Ψ: F (D, θ)/Aut(D)→ HilbdF/Y

is universally injective and an embedding in characteristic 0
(but can be purely inseparable in positive characteristic).



The Hilbert scheme of a diagram

Let H(D) ⊂ HilbdF/Y denote the set of fat points of colength d
with diagram D.

Corollary. The subset H(D) ⊂ HilbdF/Y is a locally closed
subscheme, smooth over Y , with geometrically irreducible fibers
of dimension dim(D).

Application: Let C ⊂ F be a family of curves over Y , and
consider the natural embedding HilbdC/Y ⊂ HilbdF/Y . The
solution to the problem: enumerate curves in the family C/Y
with singularities of type D is the computation of the pushdown
to Y of the class

[H(D)] ∩ [HilbdC/Y ].

Problem: Compute [H(D)].



Configuration spaces

Instead of the recursive procedure, using F (r), one could try
directly to use intersection theory on F (r) or on Ulyanov’s
compactification F 〈r〉 of the configuration space F r\ diagonals.

We want to compute the class

mr := [Xr \ {diagonals}],
where X ⊂ F is the set of singular points of the curves in the
family C ⊂ F ; then nr = r!π∗mr.

Example

In the case of plane curves

F = P2 × P(d+3)d/2

then X is the complete intersection given by the three partial
derivatives of the universal polynomial of degree d.



Excess intersection theory

Consider the natural map F 〈r〉 → F r and let pi : F 〈r〉 → F be
the composition with the i-th projection. Then

p∗1[X] · · · p∗r [X] = mr +
∑
Z

(p∗1[X] · · · p∗r [X])Z ,

where the sum is taken over all connected components Z of the
intersection

p∗1[X] ∩ · · · ∩ p∗r [X],

and where (p∗1[X] · · · p∗r [X])Z denotes the “equivalence” of Z.

For each polydiagonal ∆I in F r, there is a divisor DI in F 〈r〉.
For each DI , collect the Z’s contained in it. This gives a a
contribution bI , a class supported on DI .



Polydiagonals

How many polydiagonals of each type exist in an r-fold
product? By type k = (k1, . . . kr) we mean that k2 pairs of
points of (x1, . . . , xr) are equal, k3 triples of points of
(x1, . . . , xr) are equal, and so on, with k1 + 2k2 + · · ·+ rkr = r.
There are precisely

r!
k1! · · · kr!

( 1
1!
)k1 · · · ( 1

r!
)kr

polydiagonals of type (k1, . . . kr).

By symmetry, the class bI only depends on the type of the
diagonal. The excess intersection formula therefore gives

mr = p∗1[X] · · · p∗r [X]−
∑
k

r!
k1! · · · kr!

( 1
1!
)k1 · · · ( 1

r!
)krbk.



The conjecture

The conjectured formula was

nr =
1
r!
Pr(a1, . . . , ar) =

∑
k

1
k1! · · · kr!

(a1

1!
)k1 · · · (ar

r!
)kr ,

where the sum is taken over k = (k1, . . . , kr) ∈ Zr≥0 with∑
iki = r.

We know that π∗p∗i [X] = a1, and it remains to show that, more
generally, π∗bk = ak11 · · · akr

r .

This is a current project of my student Nikolay Qviller. The
ambition for the time being is to prove the shape of the
polynomials nr, not to compute them.

Note that Kazarian has a topological argument, involving Thom
polynomials, for showing that such a formula holds.
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Thank you for your attention!



The Hunting of the Snark (Lewis Carrol)

The Beaver had counted with scrupulous care,
Attending to every word:
But it fairly lost heart, and outgrabe in despair,
When the third repetition occurred.

It felt that, in spite of all possible pains,
It had somehow contrived to lose count,
And the only thing now was to rack its poor brains
By reckoning up the amount.

“Two added to one — if that could but be done,”
It said, “with one’s fingers and thumbs!”
Recollecting with tears how, in earlier years,
It had taken no pains with its sums.

“The thing can be done,” said the Butcher, “I think.
The thing must be done, I am sure.
The thing shall be done! Bring me paper and ink,
The best there is time to procure.


