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Random graphs

Plan of the lectures:

Lecture 1:
Real-world networks and inhomogeneous random graphs

Lecture 2:
Inhomogeneous random graphs: small-world phenomenon

Lecture 3:
Configuration model and its properties

Lecture 4:
Real-world networks and routing on random graphs



Material

Lecture notes in preparation:

Random Graphs and Complex Networks
http://www.win.tue.nl/~rhofstad/NotesRGCN.html
http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf

Material from Chapters 6-11.
Exercises taken from lecture notes.



Lecture 1:

Real-world networks and
inhomogeneous random graphs



Complex networks

Yeast protein interaction network Internet topology in 2001



Scale-free paradigm

N Log-Log histogram for actor degree in 2007 (1477961 values)
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Loglog plot of degree sequences in Internet Movie Data Base (2007)

and in the AS graph (FFr97)
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Small-world paradigm

0Lia/ejournal histogram for user distance in 2007 (8279218338 values)
.4 : -

Ggyegu histogram for user distance in 200812 (1656328424 values)
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Distances in social networks gay .eu on December 2008 and
livejournal in 2007.
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Modeling real networks

e Inhomogeneous Random Graphs:
Static random graph, independent edges with inhomogeneous edge occu-
pation probabilities, yielding scale-free graphs.

e Configuration Model:
Static random graph with prescribed degree sequence.

e Preferential Attachment Model:
Dynamic random graph, attachment proportional to degree plus constant.



Modeling real networks

e Inhomogeneous Random Graphs:
Static random graph, independent edges with inhomogeneous edge occu-
pation probabilities, yielding scale-free graphs.

e Configuration Model:
Static random graph with prescribed degree sequence.

e Preferential Attachment Model:
Dynamic random graph, attachment proportional to degree plus constant.

Universality??



Erdos-Rényi random graph
Vertex set [n] :={1,2,...,n}.

Erdés-Rényi random graph is random subgraph of complete graph on
(n] where each of (1)) edges is occupied with probab. p.

Simplest imaginable model of a random graph.

e Attracted tremendous attention since introduction 1959, mainly in
combinatorics community.

Probabilistic method (Erdds et al).

Egalitarian: Every vertex has equal probability of being connected to.
Misses hub-like structure of real networks.



Rank-1 inhomogeneous random graphs

Attach edge with probability p;; between vertices ; and j, where
W;wW;

Pij— 77—
gn + w;w,;

gn — Z Wi,
i€n]

and different edges are independent.
Interpretation: w; is close to expected degree vertex .

and

When w; = n\/(n — \), we retrieve Erdés-Rényi random graph with
p=A/n.



Condition 6.3: Regularity vertex weights

Denote empirical distribution function weight by
1
Fn(l‘) - ﬁ Z l{wigx}a x> 0.
i€[n]
(@) Weak convergence of vertex weight. There exists I’ s.t.
W, -5 W,

where W, and W have distribution functions £, and F.
(b) Convergence of average vertex weight.

lim E[W,] = E[W] > 0.

n—o0

(c) Convergence of second moment vertex weight.

lim E[W? = E[W?).

n—00



Canonical choices of weights

(a) Take w = (wy, ..., w,) as i.i.d. random variables with distribution
function £
(b) Take w = (w1, ..., w,) as

w; = [1 — F]_l(z/n)
Interpretation: proportion of vertices i with w; < z is close to F'(x).1
Power-law example:

0 forx < a,
F(ﬂf){

1—(a/z)™ ! forz >a,
in which case

11— F]  u) = a(1/u)~ Y, so that w; = a(n/j)" Y.



Degree structure graph

Denote proportion of vertices with degree k by
1
p" == _
k n Z I[{DZ*k}’
i€n]
where D, denotes degree of vertex :.

Let Condition 6.3(a) hold. Then, model is sparse, i.e., there exists
probability distribution (p;)72, s.t.

e—WM} ,

P" —sp.  where p,= E[ 5

where W ~ F.
In particular, >, p. ~ ck™ TV P(W > k) ~ k(T



Critical value IRG

Bollobas-Janson-Riordan (07), Chung-Lu (02), [Theorem 9.2]:

Let W ~ F' then

e largest component ~ (n with ¢ € (0,1) for v = E[W?]/E[W] > 1;
e largest component o(n) for v = E[IV?]/E[IW] < 1.

Identifies critical value IRG as
v = E[W?/EW] = 1,

where v is asymptotic expected number of forward neighbors, and W/
is asymptotic weight of uniform vertex.



Robustness of networks

Random attack: Remove vertices uniformly at random with probability
p. Obtain rank-1 IRG where now probability of edge ij between kept

vertices equals
w;w,;
l, + wiwj’

and otherwise equals 0.
Giant component exists whenever

(1—p > 1.

In particular, when v = oo, always giant component:
Robust to random failure.



Robustness of networks

Deliberate attack: Remove proportion p of vertices with highest
weight. Obtain rank-1 IRG where probability of edge 75 for i, j > np

equals
w;wW,;
l, + W;w; 7

while otherwise probability equals 0.

Thus, giant component exists whenever
Zi>np wZQ
gn
In particular, even when v = oo, for p large, no giant component:
Fragile to deliberate attacks.

> 1.



Exercises Monday afternoon

Exercises:
6.1,6.2,6.3,6.8,6.15;
9.1,9.2,9.3, 9.4,9.5,9.6,9.7,9.8,9.9,9.11, 9.12, 9.13.

[Numbers refer to October 3, 2011 version of the lecture notes.]



Lecture 2:

Inhomogeneous random graphs:
small-world phenomenon and its proofs



Graph distance inhomogeneous random graphs

H,, is graph distance between uniform pair of vertices in graph.



Graph distance inhomogeneous random graphs

H,, is graph distance between uniform pair of vertices in graph.

Theorem 1. [Theorem 9.3] When » > 1 and Condition 6.3(a-c) holds,
conditionally on H,, < oo,
Hn P

> 1.
log, n

Under stronger conditions, fluctuations are bounded (vdEvdHHOS).



Graph distance inhomogeneous random graphs

H,, is graph distance between uniform pair of vertices in graph.

Theorem 1. [Theorem 9.3] When » > 1 and Condition 6.3(a-c) holds,
conditionally on H,, < oo,
Hn P

> 1.
log, n

Under stronger conditions, fluctuations are bounded (vdEvdHHOS8)

Theorem 2. [Theorem 9.4] (CLO3, Norros+Reittu 06). When 7 € (2, 3),
and Condition 6.3(a-b) hold, under certain further conditions on F),,
and conditionally on H,, < oo,
H, » 2
loglogn  |log (1 —2)|’




x +— log log x grows extremely slowly
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Digression 1: 7 = 3

Theorem 3. [Theorem 9.22]. When 7 = 3 in the form

w; = c(n/i)Y?,

then, conditionally on H,, < oo,

Hyloglogn » !

logn



Lecture 3:

Configuration model and its properties



Configuration model

Invented by Bollobas (1980), EJC: 285 cit. to study

number of graphs with given degree sequence.
Inspired by Bender+Canfield (1978), JCT(A): 300 cit.
Giant component studied by Molloy, Reed (1995), RSA: 664 cit.
Popularized by Newman, Strogatz, Watts (2001), Psys. Rev. E: 1190
cit.

Let n be number of vertices and d;,ds, ..., d, sequence of degrees.
Often take (d,);c|,) to be sequence of independent and identically dis-
tributed (i.i.d.) random variables with certain distribution.

Special attention for power-law degrees, i.e., when
P(D; > k) =c.k 71+ o(1)),

where ¢ is constantand 7 > 1.



Power-law degree sequence CM
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Configuration model: graph construction

How to construct graph with above degree sequence?
e Assign to vertex j degree d;.

gn - Z dL
i€[n]

is total degree. Assume /7, is even.
Incident to vertex i have d; ‘stubs’ or half edges.



Configuration model: graph construction

How to construct graph with above degree sequence?

e Assign to vertex j degree d;.
gn - Z dL
i€[n]

is total degree. Assume /7, is even.
Incident to vertex i have d; ‘stubs’ or half edges.

e Connect stubs to create edges as follows:

Number stubs from 1 to /,, in any order.

First connect first stub at random with one of other/,, — 1 stubs.
Continue with second stub (when not connected to first) and so on,
until all stubs are connected...



Condition 7.2: Regularity vertex degrees

Denote empirical distribution function degrees by

1
Fn(x) — E Z ﬂ{digx}a x> 0.
i€[n]

(@) Weak convergence of vertex degrees. There exists I s.t.
D, - D,

where D, and D have distribution functions £, and F.
(b) Convergence of average vertex weight.

lim E[D,] = E[D] > 0.

n—o0

(c) Convergence of second moment vertex degrees.

lim E[D? = E[D?].

n—oo



Properties configuration model

CM can have cycles and multiple edges, but these are relatively scarce
compared to the number of edges. [Theorem 7.6]

Let D, denote degree of uniformly chosen vertex. Condition 7.2(a):
D,, converges in distribution to limiting random variable D.

[Theorem 7.8, Prop. 7.9] When E[D?] — E[D?] < oo, then numbers
of self-loops and multiple edges converge in distribution to two in-
dependent Poisson variables with parameters /2 and v*/4, respec-
tively, where

E[D(D — 1),
E[D]

UV =

Configuration model (CM) is locally tree-like.



Properties configuration model (Cont.)

Can interpret parameter v as mean of size-biased distribution of D
minus one.

This distribution is asymptotic distribution of forward degree of neigh-
bor of uniformly chosen vertex.

v > 1is equivalent to branching process approximation of connected
components being supercritical, and giant component existing.



Graph distances in configuration model

H,, is graph distance between uniform pair of vertices in graph.



Graph distances in configuration model

H,, is graph distance between uniform pair of vertices in graph.

Theorem 4. (vdHHVMO03). When 7 >3 and v > 1, conditionally

on H, < oo,
Hn P

log, n
Fori.i.d. degrees having power-law tails, fluctuations are bounded.

> 1.




Graph distances in configuration model

H,, is graph distance between uniform pair of vertices in graph.

Theorem 4. (vdHHVMO03). When 7 >3 and v > 1, conditionally

on H, < oo,
Hn P

log, n

Fori.i.d. degrees having power-law tails, fluctuations are bounded.

> 1.

Theorem 5. (vdHHZ07, Norros+Reittu 04). When 7 € (2, 3), condition-

ally on H,, < oo,
H, P 2

loglogn  |log (1 —2)|’
Fori.i.d. degrees having power-law tails, fluctuations are bounded.




Lecture 4:

Real-world networks and routing on random
graphs



Scale-free paradigm

N Log-Log histogram for actor degree in 2007 (1477961 values)
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Loglog plot of degree sequences in Internet Movie Data Base (2007)

and in the AS graph (FFr97)
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Small-world paradigm

0Lia/ejournal histogram for user distance in 2007 (8279218338 values)
.4 : -

Ggyegu histogram for user distance in 200812 (1656328424 values)

Frequency
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Distance

Distances in social networks gay .eu on December 2008 and
livejournal in 2007.

Distance



Network functions

Internet: e-mail

WWW: Information gathering

Friendship networks: gossiping, spread of information and disease

Power grids: reliability



Network functions

Internet: e-mail
Routing on networks, congestion, network failure

WWW: Information gathering
Crawling networks, motion on networks

Friendship networks: gossiping, spread of information and disease
Spread of diseases, motion on networks, consensus reaching

Power grids: reliability
Robustness to (random and deliberate) attacks



Network functions

Internet: e-mail
Routing on networks, congestion, network failure

WWW: Information gathering
Crawling networks, motion on networks

Friendship networks: gossiping, spread of information and disease
Spread of diseases, motion on networks, consensus reaching

Power grids: reliability
Robustness to (random and deliberate) attacks

Processes on networks!



Movies



Distances in IP graph
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Digression 2: Preferential attachment models

Albert-Barabasi (1999):

Emergence of scaling in random networks (Science)

8737 citations on April 4, 2011.

Bollobas, Riordan, Spencer, Tusnady (2001):

The degree sequence of a scale-free random graph process (RSA)
371 citations in April 4, 2011.

In preferential attachment models, network is growing in time, in such
a way that new vertices are more likely to be connected to vertices that
already have high degree.

Rich-get-richer model.



Digression 2: Preferential attachment models

At time n, a single vertex is added to the graph with m edges ema-

nating from it. Probability that an edge connects to the i'" vertex is
proportional to

DZ<TL — 1) + 5,
where D;(n) is degree vertex i at time n, § > —m is parameter model.



Digression 2: Preferential attachment models

At time n, a single vertex is added to the graph with m edges ema-
nating from it. Probability that an edge connects to the i'" vertex is
proportional to

Dl(n — 1) + 5,

where D;(n) is degree vertex i at time n, > —m is parameter model.

Different edges can attach with different updating rules:

(@) intermediate updating degrees with self-loops (BA99, BRO4,
BRSTO01)

(b) intermediate updating degrees without self-loops;
(c) without intermediate updating degrees, i.e., independently.

(Graphs in cases (b-c) have advantage of being connected.)



Scale-free nature PA

Yields power-law degree sequence with power-law exponent
T=34+6/m € (2,00).

(Bollobas, Riordan, Spencer, Tusnady (01) 0 = 0, Deijfen, vdE, vdH, Hoo
(09),...) [Theorem 8.2]
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Albert-Laszlo Barabasi

“...the scale-free topology is evidence of organizing principles
acting at each stage of the network formation. (...) No matter
how large and complex a network becomes, as long as pref-
erential attachment and growth are present it will maintain its
hub-dominated scale-free topology.”



Distances PA models

Non-rigorous physics literature predicts that scaling distances in pref-
erential attachment models similar to the one in configuration model
with equal power-law exponent degrees.



Distances PA models

Diam,, is diameter in PA model of size n.
Theorem 6 (Dommers-vdH-Hoo 10). Forallm > 2and 7 € (3, ),

Diam,,, H,, = O(logn).

Theorem 7 (Dommers-vdH-Hoo 10, DerMonMor 11). For all m > 2 and

T € (2,3),
H, P 4

loglogn  ~ |log (1 —2)|’

and
Diam,, = ©(loglogn).

[Talk Christian Monch.]



Distances PA models

Theorem 8 (Bol-Rio 04). For all m > 2 and 7 = 3, for model (a),

logn

Diam,,, H, = (1+ op(1)).

loglogn

Universality!



Shortest-weight problems

In many applications, edge weights represent cost structure graph,
such as economic or congestion costs across edges.

Time delay experienced by vertices in network is given by hopcount
H,,, which is number of edges on shortest-weight path.

How does weight structure influence hopcount and weight SWP?

Assume that

edge weights are i.i.d. random variables:
Aldous’ stochastic mean-field model of distance.

Problem with exponential edge weights received tremendous atten-
tion on complete graph, here extend to random graphs.
Graph distances: weights = 1.



Results

Theorem 9. (BvdHH10). Let H,, be number of edges between two uni-
formly chosen vertices on CM with i.i.d. exponential edge weights.

Assume D > 2a.s.and v = % > 1.
For7 > 3or7 € (2,3),
H, —alogn d . 7
valogn C
where 7 is standard normal, and
a = —Z > 1 for 7> 3,
v—1
201 — 2
a = 7 >6(0,1) for 7€ (2,3)




Results

Theorem 10. (BvdHH10). Let C,, be weight of shortest path between
two uniformly chosen vertices on CM with i.i.d. exponential edge
weights.

Assume D > 2 a.s. and v = “2(0—1)]

E[D]

> 1.
Then, for some limiting random variable C.., and for 7 > 3or7 € (2, 3),
C, —vlogn BN Coo,

where

vo= > () for 7> 3,
v—1

v =0 for 7€ (2,3).



Discussion Theorems 9-10

Random weights have marked effect on shortest-weight problem.

Proof Theorems 9-10: Comparison neighborhood uniform vertex to
branching process, and use wealth of results on FPP on trees.

Surprisingly universal behavior for FPP on configuration model.
Universality is leading paradigm in statistical physics.

Only few examples where universality can be rigorously proved.
Extension to FPP on super-critical Erdés-Rényi random graph.

Key question:
To what extent is universality true for processes on random graphs
models?

Cool application by Ding, Kim, Lubetzky, and Peres identifying dis-
tance between two random vertices in two-core of slightly supercriti-
cal ERRG.



Digression 3: FPP on complete graph

Consider complete graph K,, = (|n], E,,) with edge weights F* where
(Ee)ecr, are i.i.d. exponentials.

Theorem 11. (BvdH10). Let C,, and H,, be weight and number of edges
of shortest path between two uniformly chosen vertices in K,,. Then,
with

A=As)=T(1+1/s)%,
there exists a limiting random variable C., such that

1
C, — Xlogn ELIN Coo,

while
H, —slogn 4

\/s2logn

where 7 is standard normal.

> /),



Weights matter: s < 0

Not always CLT, even when weights have density:
Consider complete graph K,, = ([n], &,) with edge weights £’ where
(E.)cce, arei.i.d. exponentials and s < 0.

Theorem 12. (BvdHH10b). H,, converges in distribution. Limit is con-
stant & = k(s) for most s...

What are universality classes FPP on complete graph?
[Talk Jesse Goodman.]



Topology matters

Theorem 13. (BvdHH in progress). For configuration model with de-
gree exponent 7 > 3, there exist o, 5 > 0 such that

H, — alogn 1,
VB logn n

Hopcount not always of order log n:
Weights (1 + E.).ce, and 7 € (2,3), H,, = O(loglogn).

What are universality classes FPP on random graph, and are they
related to ones for FPP on complete graph?



