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Abstract. Some of the objects introduced by Boltzmann, entropy in the first place, have proven to be of
great inspiration in mathematics, and not only in problems related to physics. I will describe, in a slightly
informal style, a few striking examples of the beauty and power of the notions cooked up by Boltzmann.

Introduction

In spite of his proudly unpolished writing and his distrust for some basic mathematical concepts
(such as infinity or continuum), Ludwig Boltzmann has made major contributions to mathematics.
In particular, the notion of entropy, and the famous H-Theorem, have been tremendous sources of
inspiration to (a) understand our (physical) world in mathematical terms; (b) attack many (purely)
mathematical problems. My purpose in this lecture is to develop and illustrate these claims. Before
going on, I shall provide some quotations about the influence of Boltzmann on the science of his
time. There is no need to recall how much Einstein, for instance, praised Boltzmann’s work in
statistical mechanics. But to better illustrate my point, I will quote some great mathematicians
talking about Boltzmann:

All of us younger mathematicians stood by Boltzmann’s side.

Arnold Sommerfeld (about a debate taking place in 1895)

Boltzmann’s work on the principles of mechanics suggests the problem of developing mathe-
matically the limiting processes (...) which lead from the atomistic view to the laws of motion of
continua.

David Hilbert (1900)

Boltzmann summarized most (but not all) of his work in a two volume treatise Vorlesungen
über Gastheorie. This is one of the greatest books in the history of exact sciences and the reader is
strongly advised to consult it.

Mark Kac (1959)

This lecture is an extended version of a conference which I gave at various places (Vienna, Münich,
Leipzig, Brisbane, Pisa) on the occasion of the hundredth anniversary of the death of Boltzmann.
It is a pleasure to thank the organizers of these events for their excellent work, in particular Jakob
Yngvason, Herbert Spohn, Manfred Salmhofer, Bevan Thompson, and Luigi Ambrosio. Thanks are
also due to Wolfgang Wagner for his comments. The style will be somewhat informal and I will
often cheat for the sake of pedagogy; more precise information and rigorous statements can be
retrieved from the bibliography.

1 1872: Boltzmann’s H-Theorem

The so-called Boltzmann equation models the dynamics of rarefied gases via a time-dependent
density f(x, v) of particles in phase space (x stands for position, v for velocity):

∂f

∂t
+ v · ∇xf = Q(f, f).
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Here v · ∇x is the transport operator, while Q is the bilinear collision operator:

Q(f, f) =

∫

R3
v∗

×S2

B
[
f(v′)f(v′∗) − f(v)f(v∗)

]
dv∗ dσ;

and B = B(v−v∗, σ) ≥ 0 is the collision kernel. The notation v′, v′∗ denotes pre-collisional velocities,
while v, v∗ stand for post-collisional velocities (or the reverse, it does not matter in this case). I refer
to my review text in the Handbook of Mathematical Fluid Dynamics [19] for a precise discussion,
and a survey of the mathematical theory of this equation.

According to this model, under ad hoc boundary conditions, the entropy S is nondecreasing

in time. That is, if one defines

S(f) = −H(f) := −
∫

Ω×R3
v

f(x, v) log f(x, v) dv dx,

then the time-derivative of S is always nonnegative.
Boltzmann’s theorem is more precise than just that: It states that a (strictly) positive amount

of entropy is produced at time t, unless the density f is locally Maxwellian (hydrodynamic):
that is, unless there exist fields ρ (scalar), u (vector) and T (scalar) such that

f(x, v) = Mρ,u,T (v) =
ρ(x) e−

|v−u(x)|2

2T (x)

(2πT (x))3/2
.

In words, a hydrodynamic state is a density whose velocity dependence is Gaussian, with scalar
covariance — at each position x. It depends on three local parameters: density ρ, velocity u, and
temperature T (temperature measures the variance of the velocity distribution).

The time-derivative of the entropy is given by an explicit formula:

dS

dt
= −dH

dt
=

∫

Ω

D(f(t, x, ·)) dx,

where

D(f) =
1

4

∫

v,v∗,σ

B [f(v′)f(v′∗) − f(v)f(v∗)] log
f(v′)f(v′∗)

f(v)f(v∗)
dv dv∗ dσ ≥ 0.

So Boltzmann’s theorem can be recast as

[
D(f) = 0

]
⇐⇒

[
f(v) = MρuT (v) for some parameters ρ, u, T

]
.

Let me now make a disclaimer. Although Boltzmann’s H-Theorem is 135 years old, present-
day mathematics is unable to prove it rigorously and in satisfactory generality. The obstacle is the
same as for many of the famous basic equations of mathematical physics: we don’t know whether
solutions of the Boltzmann equations are smooth enough, except in certain particular cases (close-
to-equilibrium theory, spatially homogeneous theory, close-to-vacuum theory). For the moment we
have to live with this shortcoming.

2 Why is the H-Theorem beautiful?

Some obvious answers are:

(i) Starting from a model based on reversible mechanics and statistics, Boltzmann finds irre-
versibility (which triggered endless debates);

(ii) This is an exemplification of the Second Law of Thermodynamics (entropy can only increase
in an isolated system), but it is a theorem — as opposed to a postulate.

Here are some more “mathematical” reasons:

(iii) Its proof is clever and beautiful, although not perfectly rigorous;

(iv) It provides a powerful a priori estimate on a complicated nonlinear equation;
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(v) The H functional has a statistical (microscopic) meaning: it says how exceptional the
distribution function is;

(vi) The H-Theorem gives some qualitative information about the evolution of the (macro-
scopic) distribution function.

All these ideas are still crucial in current mathematics, as I shall discuss in the sequel.

3 The H-Theorem as an a priori estimate on a complicated nonlinear

equation

Let f(t, ·) be a solution of the full Boltzmann equation. The H-Theorem implies the estimate

H(f(t)) +

∫ t

0

∫
D(f(s, x, ·)) dx ds ≤ H(f(0)), (1)

where H stands for the H functional, and D for the associated dissipation functional. There is in
fact equality in (1) if the solution is well-behaved, but in practise it is easier to prove the inequality,
and this is still sufficient for many purposes.

Inequality (1) is in fact two a priori estimates! Both the finiteness of the entropy and the
finiteness of the (integrated) production of entropy are of great interest.

As a start, let us note that the finiteness of the entropy is a weak and general way to prevent
concentration (“clustering”). For instance, the bound on H guarantees that the solution of the
Boltzmann equation never develops Dirac masses. This fact is physically obvious, but not so trivial
from the mathematical point of view.

The first important use of the entropy as an a priori estimate goes back to Arkeryd [2] in his
study of the spatially homogeneous Boltzmann equation — exactly hundred years after Boltzmann’s
discovery!

Both the entropy estimate and the entropy production estimate are crucial in the famous 1989
DiPerna–Lions stability theorem [10]. To simplify things, this theorem states that Entropy, entropy
production and energy bounds guarantee that a limit of solutions of the Boltzmann equation is still
a solution of the Boltzmann equation.

It is not just for the sake of elegance that DiPerna and Lions used these bounds: save for
estimates which derive from conservation laws, entropy bounds are still the only general estimates
known to this day for the full Boltzmann equation!

Robust and physically significant, entropy and entropy production bounds have been used
systematically in partial differential equations and probability theory, for hundreds of models and
problems. Still today, this is one of the first estimates which one investigates when encountering a
new model.

Let me illustrate this with a slightly unorthodox use of the entropy production estimate, on
which I worked together with Alexandre, Desvillettes and Wennberg [1]. The regularizing properties
of the evolution under the Boltzmann equation depend crucially on the microscopic properties of
the interaction: long-range interactions are usually associated with regularization. At the level of
the Boltzmann collision kernel, long range results in a divergence for small collision angles. As a
typical example, consider a collision kernel B = |v − v∗|γ b(cos θ), where

b(cos θ) sin θ ≃ θ−(1+ν), 0 < ν < 2

as θ → 0. (This corresponds typically to a radially symmetric force like r−s in dimension 3, and
then ν = 2/(s − 1).)

The regularizing effect of this singularity can be seen on the entropy production. Indeed, we
could prove an estimate of the form

∥∥∥(−∆v)
ν/4

√
f
∥∥∥

2

L2
loc

≤ C
(∫

f dv,

∫
f |v|2 dv, H(f)

) [
D(f) +

∫
f (1 + |v|2) dv

]
.

Thus, some regularity is controlled by the entropy production, together with natural physical
estimates (mass, energy, entropy).
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4 The statistical meaning of the H functional

As I said before, the basic statistical information contained in the H functional is about how
exceptional the distribution function is. This interpretation is famous but still retains some of
its mystery today. It appears not only in Boltzmann’s work, but also in Shannon’s theory of
information, which in some sense announced the ocean of information in which we are currently
living.

For those who believe that entropy has always been a crystal-clear concept, let me recall a
famous quote by Shannon: “I thought of calling it “information”. But the word was overly used,
so I decided to call it “uncertainty”. When I discussed it with John von Neumann, he had a better
idea: (...) “You should call it entropy, for two reasons. In first place your uncertainty has been
used in statistical mechanics under that name, so it already has a name. In second place, and more
important, no one knows what entropy really is, so in a debate you will always have the advantage.”
(Note the influence of mathematicians again, for good or for bad...)

Let me recall some basic concepts from information theory; for more information (if I may say)
on the subject the reader can consult the classical treatise by Shannon [16], and the more recent
one by Cover and Thomas [7].

In a nutshell, the Shannon–Boltzmann entropy S = −H = −
∫

f log f quantifies (in logarithmic
scale) how much information there is in a “random” signal, or a language; think of f as the density of
the distribution of the signal. For instance, a deterministic language means complete predictability,
so no surprise and no information (think of a public statement by a politician); thus S = −∞.

When there is a nontrivial reference probability measure, the proper formula for H is

Hµ(ν) =

∫
ρ log ρ dµ; ν = ρ µ.

Let me mention in passing another hero of modern information theory: the Fisher information∫ |∇f |2
f

quantifies how difficult it is to reconstruct the mean value of f from the observations. Also

it plays an important role in many problems of “pure” mathematics; see for instance Voiculescu [24].
But this is a different story, so I won’t develop on this fascinating subject.

From a physical point of view, the entropy functional measures the volume of microstates

associated, to some degree of accuracy in macroscopic observables, to a given macroscopic con-
figuration, or observable distribution function. All words are meaningful here, in particular the
concept of entropy implies an observation, with some margin of error. (Entropy is an anthropic
notion, as the joke goes.) The basic question related to entropy is “How exceptional is the observed
configuration?”

To make this fuzzy discussion a bit more concrete, I shall recall a classical computation by
Boltzmann. Take N identical particles, to be distributed over k boxes, and let f1, . . . , fk be some
(rational) frequencies (i.e. numbers in [0, 1] adding up to 1). Let Nj be the number of particles in
the box number j. Let further ΩN (f) be the number of configurations such that Nj/N = fj for
any j. (ΩN (f) might be zero, so I shall implicitly assume that N is so chosen that this is not the
case.)

After a little bit of combinatorics (which classically rely on Stirling’s formula, but the latter
can be dispended with [7]), one finds

#ΩN (f1, . . . , fk) ∼ e−N
P

fj log fj as N → ∞,

in the sense that (1/N) log#ΩN converges to −∑
fj log fj, which is nothing but the discrete

version of −
∫

f log f .

The famous Sanov theorem, part of the theory of large deviations [8], generalizes this compu-
tation, and puts the intuition of Boltzmann on rigorous mathematical grounds. Let x1, . . . , xn, . . .
be independent “microscopic variables” with law µ; define

µ̂N :=
1

N

N∑

i=1

δxi
.
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This is a random measure, usually called the empirical measure. It contains all the information
which is “macroscopically observable” if we cannot distinguish between different particles.

How will the values of µ̂N be distributed for large N?? The fuzzy answer is that µ̂N visits
measures more or less often according to their entropy. Formally:

P[µ̂N ≃ ν] ∼ e−NHµ(ν) d(ν)

A rigorous writing of Sanov’s theorem involves three limiting processes, and there is no way
one can do without them. Let (ϕk)k∈N be a dense sequence of Lipschitz functions (think of them
as “observables”); let ν be a measure (think of it as the “guessed empirical measure”); and let
ε > 0 be some real number (think of it as an “observation error” measured on some choice of
observables). Define

Ω(N, ε, k) :=

{
(x1, . . . , xN ); ∀j ≤ k,

∣∣∣
ϕj(x1) + . . . + ϕj(xN )

N
−

∫
ϕj dν

∣∣∣ < ε

}

(This is the set of data compatible with the observations, given the admissible error.) Then

Hµ(ν) = lim
k→∞

lim sup
ε→0

lim sup
N→∞

(
− 1

N
log Pµ⊗N [Ω(N, ε, k)]

)
.

Behind the technical trickery, the reader should recognize the famous formula written on Boltz-
mann’s grave, S = k log W .

5 Boltzmann’s ideas revisited by Voiculescu

In the past decade, Voiculescu made spectacular contributions to operator theory by adapting some
ideas coming from statistical mechanics and statistics. [24] A few reminders about the theory of
von Neumann algebras will convince the nonexpert reader that this has apparently nothing to do
with the questions upon which Boltzmann has worked.

Initially motivated by quantum mechanics and group representation theory, the study of von
Neumann algebras has evolved into a mathematical domain on its own, with many respectable
internal problems. Let H be a separable Hilbert space, and let B(H) stand for the space of bounded
operators on H , equipped with the operator norm. By definition, a von Neumann algebra A is a
sub-algebra of B(H) which (a) contains the identity operator I; (b) is stable by passage to the
adjoint, A → A∗; (c) is closed for the weak topology, defined by the linear forms A → 〈Aξ, η〉 (for
any two vectors ξ, η in H).

The classification of von Neumann algebras is still an active topic with famous unsolved basic
questions. By definition, a type II1 factor is an infinite-dimensional von Neumann algebra A with
trivial center, equipped with a tracial state, i.e. a linear form τ : A → C such that (a) τ(A∗A) ≥ 0
for any A ∈ A (positivity property); (b) τ(I) = 1 (unit mass property); (c) τ(AB) = τ(BA)
(traciality). Then (A, τ) is called a noncommutative probability space.

The analogy between “classical” and noncommutative probability spaces can be pursued to
some extent. In particular, one can define the noncommutative distribution function of an
n-tuple (A1, . . . , An) of self-adjoint elements in (A, τ): this is just the collection of all traces of all
(noncommutative) polynomials of A1, . . . , An. (So this is a bunch of complex numbers, say τ(A1),
τ(A1A2), τ(A2

1A3A2), etc.)
Some of these noncommutative probability spaces can be realized as “macroscopic” limits of

large random matrices. Let indeed X
(N)
1 , . . . , X

(N)
n be an n-tuple of random N × N matrices.

If the trace of any noncommutative polynomial constructed with these matrices has a definite
limit, then one may obtain (via some nonessential abstract construction) elements A1, . . . , An in a
noncommutative probability space, in such a way that

τ
(
P (A1, . . . , An)

)
= lim

N→∞

1

N
E tr P (X

(N)
1 , . . . , X(N)

n ),

where E stands for probabilistic expectation.
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One of the most famous such cases is Wigner’s theorem, which asserts that the limiting
distribution of large Hermitian matrices with independent Gaussian entries is the so-called semi-
circular law.

Voiculescu had the following idea: Let A1, . . . , An be any n-tuple of self-adjoint operators, why
not try to think of τ = law (A1, . . . , An) as the observable limit of a family of large matrices? In a
statistical physics perspective, the operators Ai would represent some kind of macroscopic system,
and the large matrices would be the microscopic system. This led him to the following definitions:

Ω(N, ε, k) :=

{
(X1, . . . , Xn), N × N Hermitian; ∀P polynomial of degree ≤ k,

∣∣∣∣
1

N
tr P (X1, . . . , Xn) − τ(P (A1, . . . , An))

∣∣∣∣ < ε

}
;

χ(τ) := lim
k→∞

lim sup
ε→0

lim sup
N→∞

[
1

N2
log vol(Ω(N, ε, k)) − n

2
log N

]

Once again, behind the abstract framework the reader should recognize Boltzmann’s formula!
By lack of competence, I shall not describe the powerful results obtained by Voiculescu thanks to
this new tool; but instead reproduce the 2004 quotation of the National Academy of Sciences of
USA:

Award in Mathematics: A prize awarded every four years for excellence in published mathemat-
ical research goes to Dan Virgil Voiculescu, professor, department of mathematics, University of
California, Berkeley. Voiculescu was chosen “for the theory of free probability, in particular, using
random matrices and a new concept of entropy to solve several hitherto intractable problems in von
Neumann algebras.”

What would be Boltzmann’s reaction if he were to learn of such an unexpected outcome of his
ideas?

6 H and hydrodynamic limit

The H-Theorem is one of the main conceptual tools which can make us believe in the hydrody-

namical limit. Take for instance the Boltzmann equation, in the form

τ
∂f

∂t
+ v · ∇xf =

1

Kn
Q(f, f),

where τ (time-rescaling) and Kn (Knudsen number) are positive parameters. Assume that we are
considering small fluctuations around a global equilibrium, and make the ansatz

f(t, x, v) =
e−

|v|2

2

(2π)3/2

(
1 + εg(t, x, v)

)
.

As Kn becomes very small (physically speaking, this means that the mean free path is very
short), the effect of collisions is enhanced, and the finiteness of the entropy production forces f to
be very close to a local Maxwellian, that is a state of the form

f(x, v) ≃ Mρ u T (x, v) = ρ(x)
e−

|v−u(x)|2

2T (x)

(2πT (x))3/2
.

Indeed, it is part of the H-Theorem that such distributions are the only ones for which the entropy
production vanishes.

This approximation by a local Maxwellian imposes a tremendous reduction of the complexity
of the description, called hydrodynamic approximation.

The mathematical study of the hydrodynamic approximation has a long history; in spite of
its loose formulation, it is clear that Hilbert’s sixth problem alludes to it (among other things).
Many authors have established the validity of the hydrodynamic approximation under various sets
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of assumptions (with or without smoothness, close to or far from equilibrium, in a compressible or
incompressible regime, etc.) Arkeryd, Asano, Bardos, Caflisch, Cercignani, DeMasi, Ellis, Esposito,
Golse, Grad, Illner, Lebowitz, Levermore, Lions, Marra, Maslova, Masmoudi, Nishida, Pinsky,
Pulvirenti, Romanovski, Saint-Raymond, Ukai, and other researchers contributed to this story.

One spectacular achievement in this class of problems is the incompressible Navier–Stokes

limit in the large, recently accomplished by Golse and Saint-Raymond [13] (with previous input
by Bardos, Golse, Levermore, Lions, Masmoudi). Stated very informally, the main result is as
follows. For each ε > 0, let fε solve ε ∂tfε + v ·∇xfε = 1

εQ(fε, fε) in [0, T ]×R
3×R

3. Make certain
assumptions on the collision kernel, and assume further that

H(fε|M) =

∫
fε log

fε

M
dxdv = O(ε2).

Let uε = 1
ε

∫
fε(x, v) v dv. Then any weak cluster point u = limk→∞(uεk

), where εk → 0, solves
the incompressible Navier–Stokes equation

∂u

∂t
+ (u · ∇)u + ∇p = ν ∆u ∇ · u = 0

for some viscosity coefficient ν > 0 which depends on the form of Boltzmann’s collision kernel.
From the physical point of view, the way to achieve incompressibility is via small perturbations

of equilibrium; so the unknown u is not really a velocity, but rather a fluctuation of velocity (around
rest). The time-rescaling is the way to go beyond the short timescale of sound waves.

What makes all the beauty of the Golse–Saint-Raymond theorem, and also makes its proof
incredibly difficult, is the fact that there is no assumption of smoothness or smallness on u.

Not suprisingly, entropy and the H-Theorem play a key role in these results. They are used to
• define the notion of convergence: H(f |M) = O(ε2), where H(f |M) stands for a natural

notion of “relative” H function of f with respect to the equilibrium M ;
• get the compactness in the limit ε → 0;
• prove the hydrodynamic behavior in the limit;
• control the conservation laws asymptotically in the limit. Indeed, the DiPerna–Lions solutions,

used in this result, are so weak that there is no reason why they should satisfy the local conservation
laws which are at the basis of the hydrodynamic behavior... To circumvent this major difficulty,
one shows that the possible departure from hydrodynamic behavior can be controlled by entropic
estimates; here is one such inequality due to Golse and Levermore [12]:

∣∣∣∣
∫

Q(f, f)

1 + (f/M)
|v|2 dv

∣∣∣∣ ≤ C (H(f |M) + D(f) + 1).

There seems to be no physical intuition for this last use of the entropy estimates; we can
appreciate on this occasion the versatility of this tool.

7 The H Theorem as a source of qualitative macroscopic information

Let us now go back to the Boltzmann equation

∂f

∂t
+ v · ∇xf = Q(f, f),

with fixed physical scales, say in a bounded physical domain.
As already said, when the H function does not decrease strictly, f is locally Maxwellian:

f(x, v) = ρ(x)
e−

|v−u(x)|2

2T (x)

(2πT (x))3/2
,

where ρ, u, T may depend on x.
On the other hand, when the H function is minimal, f is globally Maxwellian: not only does

it take a Maxwellian form, but also the density ρ and the temperature T are constant all over the
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domain, while the velocity is everywhere equal to 0. (This rule admits some exceptions in case of
exceptional geometry, but is true for, say, a generic bounded domain in R

2 or R
3, with specular

reflection on the boundary.)

These elements suggest that the H-Theorem is a great tool to study relaxation to equilibrium.

An ambitious program about entropy production was started in the early nineties by Carlen–
Carvalho and Desvillettes, with some critical impulse by Cercignani (and inspiration from earlier
work of McKean). The goal of this program was to study the large-time behavior of the Boltzmann
equation in the large, through the behavior of the H functional. One hopes to prove in particular
that the solution f(t, ·) approaches a global Maxwellian equilibrium as t → ∞, keeping a control
on time scales!

A noticeable achievement of this program is the following result due to Desvillettes and my-
self [9]. It is a conditional result, in the sense that it applies under regularity conditions which in
general are still an open problem for the Boltzmann equation:

Let f(t, x, v) be a solution of the Boltzmann equation, with appropriate boundary conditions.
Assume that

(i) f is very regular (uniformly in time): all moments (
∫

f |v|k dv dx) are finite and all derivatives
(of any order) of f are bounded;

(ii) f is strictly positive: f(t, x, v) ≥ Ke−A|v|q .

Then f(t, ·) approaches the unique equilibrium as t → ∞, and the convergence is at least like
O(t−∞) (the distance to equilibrium goes to 0 faster than any inverse power of time).

At present, this theorem applies only in certain particular cases (spatial homogeneity; close-to-
equilibrium) because of the limitations of the regularity theory of the Boltzmann equation. What
it achieves, in full generality, is a conversion of regularity bounds into decay bounds.

The proof of this theorem uses differential inequalities of first and second order, coupled via
many inequalities including:

- precised entropy production inequalities (who would have guessed...). For instance, under
some strong a priori estimates on f (smoothness, moments, positivity), one can show that

D(f) ≥ Kf,ε[H(f) − H(Mf
ρuT )]1+ε.

(This is a modified version of the so-called “Cercignani conjecture” [6, 18, 20].)

- the instability of hydrodynamical description: for instance we show that

d2

dt2

(∫
(f − Mf

ρ u T )2
)

≥ K

∫

Ω

(|∇xT |2 + |dev(u)|2) dx − Cε(f) ‖f − Mf
ρ u T ‖1−ε

L2 H(f |M)
1−ε
2 ,

where Mf
ρ u T stands for the local Maxwellian with same density ρ, velocity u and temperature T

as f ; and dev is the deviatoric part of u, i.e. the traceless symmetric part of the Reynolds tensor
∇u.

Such inequalities mean that if f becomes very close to a hydrodynamic state, then the time-
evolution of the (squared) distance between f and the set of hydrodynamical states will evolve in
a convex manner, and therefore f will depart from hydrodynamic behavior.

Another key feature of the proof is the fact that entropy sees both kinetic and hydrodynamic
effects. Indeed, it can be separated into a “purely kinetic” and a “purely hydrodynamic” contribu-

tions: H(f) − H(M) = [H(f) − H(Mf
ρ u T )] + H(ρ, u, T ), where H(ρ, u, T ) =

∫

Ω

ρ log
ρ

T 3/2
dx.

A careful study of the proof led Desvillettes and myself to conjecture the existence of strong
time-oscillations in the entropy production. These oscillations were spectacularly confirmed in
numerical simulations by Francis Filbet (see figures below), and are currently being studied, both
numerically and theoretically [11].

More information about the history and achievements of the subject can be found in the pro-
ceedings of the 2003 International Congress of Mathematical Physics [21], or in a course which
I taught at the Institut Henri Poincaré [22].
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Figure 1. Time-decay of the H-function, in logarithmic scale, for the Boltzmann equation in one dimension
of space and two dimensions of velocity, with periodic boundary conditions. The curve above is the H-
function, the curve below is the purely kinetic part of the H-function; when the two curves are far from
each other the gas is almost hydrodynamical, when they are close to each other it is almost homogeneous.

8 More on the qualitative behavior of the entropy

The importance and flexibility of Boltzmann’s H functional as a way to describe the qualitative
behavior of a system goes much beyond the field of partial differential equations. In the last
two sections of this text I shall illustrate this by two examples: (a) the central limit theorem in
probability theory; (b) Ricci curvature bounds in Riemannian geometry.

9 The central limit theorem

Let X1, X2, . . . , Xn, . . . be identically distributed, independent real random variables; assume that
EX2

j < ∞, EXj = 0. Then

X1 + . . . + XN√
N

−−−−→
N→∞

Gaussian random variable.

This is the central limit theorem which we learn in basic probability courses.
A few years ago, Ball, Barthe and Naor [3] interpreted this as an irreversible loss of information

along the sequence of random variables; namely,

Entropy

(
X1 + . . . + XN√

N

)
increases with N.

(Weaker versions of this theorem, involving only powers of 2, had been proven before by Barron;
and Carlen–Soffer.)

This “entropic” proof of the central limit theorem is very different from the usual proof based
on Fourier transform; it is also much more complicated. Still it gives an information-theoretical
interpretation of the central limit theorem which Boltzmann certainly would have appreciated very
much.

10 H functional and Ricci curvature

My last example will lead me into differential geometry. The Ricci curvature is (together with
the sectional and scalar curvatures) one of the three most popular notions of curvature. If M is a
Riemannian manifold, then the Ricci curvature Ricx at x is a quadratic form on TxM .

A quick (albeit incomprehensible) definition of the Ricci curvature is by contraction of the
Riemann curvature tensor: (Ric)ij = (Riem)k

kij . Intuitively, the Ricci curvature measures the rate
of separation of geodesics in a given direction, in the sense of volume (Jacobian). As usual,
positive curvature indicates a tendency for geodesics to converge, while negative curvature indicates
a tendency to diverge faster than in Euclidean space.
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A more hand-on approach to Ricci curvature bounds is in terms of distortion coefficients. For
instance, it is equivalent to say that the Ricci curvature of a Riemannian manifold M is nonnegative;
or that its distortion coefficients are never less than 1, i.e. one always overestimates the surface of
observed light sources.
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Figure 2. Because of positive curvature effects, the observer overestimates the surface of the light source.

Lower bounds on Ricci curvature are of constant use in Riemannian geometry: they appear as
privileged assumptions for isoperimetric inequalities; heat kernel estimates; Sobolev inequalities;
diameter control; spectral gap inequalities; upper bounds on the volume growth; compactness
criteria for families of manifolds; etc.

The following theorem was proven independently by Lott and me [14]; and by Sturm [17]:

A limit of manifolds with nonnegative Ricci curvature, is also of nonnegative curvature.

This theorem is interesting because the notion of limit used is a very weak one, namely the
measured Gromov–Hausdorff topology; and there is no reason why the Ricci tensor would pass to
the limit in the process. The limit might even occur with a reduction of dimension (collapsing); in
which case one has to use a slightly more intrinsic notion of Ricci curvature allowing for a change
of reference measure.

Since I mention this theorem in this lecture, the reader has probably guessed that its proof
uses Boltzmann’s entropy! And indeed the proof of the theorem does rely on entropy, in relation
with the optimal transport of probability measures, along a direction of research developed
by various authors (Cordero-Erausquin, Lott, McCann, Otto, von Renesse, Schmuckenschläger,
Sturm, and myself).

To explain this connection I shall describe what I call the lazy gas experiment.

Take a perfect gas in which particles do not interact, and ask him to move from a certain
prescribed density field at time t = 0, to another prescribed density field at time t = 1. Since the
gas is lazy, he will find a way to do so by spending a minimal amount of work (least action path).
Measure the entropy of the gas at each time, and check that it always lie above the line joining the
final and initial entropies. If such is the case, then we know that we live in a nonnegatively curved
space.

Of course these heuristics do not explain why the entropy is precisely the relevant functional to
measure the concentration of the gas; this prediction was made by Otto and myself in 2000 [15],
after a study of relations between optimal transport, logarithmic Sobolev inequalities and the
entropy functional. In the reference book [23] I explain all this and much much more; still I remain
marvelled by this new role of Boltzmann’s ubiquitous entropy.
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