Computational Harmonic Analysis meets Imaging Sciences Part I

Gitta Kutyniok (Technische Universität Berlin)

BMS Summer School Berlin, July 25 – August 5, 2016

Imaging Science Today

Due to the data deluge, the area of imaging science is of tremendous importance in today's world.

Main Tasks

- Acquisition
- Preprocessing
 - Denoising, Inpainting, ...
- Analysis
 - Feature Detection, ...
- Storing
 - Compression, …

Imaging Science Today

Due to the data deluge, the area of imaging science is of tremendous importance in today's world.

Main Tasks

- Acquisition
- Preprocessing
 - Denoising, Inpainting, ...
- Analysis
 - Feature Detection, ...
- Storing
 - Compression, …

What has Computational Harmonic Analysis to offer?

Computational Harmonic Analysis

Representation systems designed by Computational Harmonic Analysis concepts have established themselves as a standard tool in applied mathematics, computer science, and engineering.

Examples:

- Wavelets.
- Ridgelets.
- Curvelets.
- Shearlets.
- ...

Key Property:

Fast Algorithms combined with Sparse Approximation Properties!

Outline

- Computational Harmonic Analysis
 - Decomposition
 - Sparse Representations
 - Frame Theory
- 3 Desiderata for Imaging Science
 - Model Situation
 - Benchmark Result
- Wavelets
- Shearlets

6 General Framework for Sparse Approximation

An Computational Harmonic Analysis Viewpoint

Exploit a carefully designed representation system $(\psi_{\lambda})_{\lambda \in \Lambda} \subseteq \mathcal{H}$:

$$\mathcal{H}
i f \longrightarrow (\langle f, \psi_\lambda \rangle)_{\lambda \in \Lambda} \longrightarrow \sum_{\lambda \in \Lambda} \langle f, \psi_\lambda \rangle \psi_\lambda = f.$$

Desiderata:

- Special features encoded in the "large" coefficients $|\langle f, \psi_{\lambda} \rangle|$.
- Efficient representations:

$$fpprox \sum_{\lambda\in {\sf \Lambda}_N} raket{f,\psi_\lambda}{\psi_\lambda, \quad \#({\sf \Lambda}_N) ext{ small}}$$

Goals:

- Modification of the coefficients according to the task.
- Derive high compression by considering only the "large" coefficients.

Two Main Viewpoints

Decomposition:

$$\mathcal{H} \ni f \longrightarrow (\langle f, \psi_{\lambda} \rangle)_{\lambda \in \Lambda}.$$

- Preprocessing (e.g. denoising).
- Analysis (e.g. feature detection).
- Clustering/Classification.

• ...

Efficient/Sparse Representations:

$$f = \sum_{\lambda \in \Lambda} c_{\lambda} \psi_{\lambda}.$$

• Compression.

- Regularization of inverse problems.
- Ansatz functions for PDE solvers.

• ...

Decomposition

Denoising (Preprocessing):

 $\mathcal{H} \ni f \longrightarrow (\langle f, \psi_{\lambda} \rangle)_{\lambda \in \Lambda} \longrightarrow (\langle f, \psi_{\lambda} \rangle)_{\lambda \in \Lambda \setminus \Lambda_0} \rightsquigarrow \tilde{f}.$

Decomposition

Denoising (Preprocessing):

 $\mathcal{H} \ni f \longrightarrow (\langle f, \psi_{\lambda} \rangle)_{\lambda \in \Lambda} \longrightarrow (\langle f, \psi_{\lambda} \rangle)_{\lambda \in \Lambda \setminus \Lambda_0} \rightsquigarrow \tilde{f}.$

Edge Detection (Analysis):

$$\mathcal{H} \ni f \longrightarrow (\langle f, \psi_{\lambda} \rangle)_{\lambda \in \Lambda} \longrightarrow (\langle f, \psi_{\lambda} \rangle)_{\lambda \in \Lambda_{1}} \rightsquigarrow \tilde{f}.$$

Two Main Viewpoints

Decomposition:

$$\mathcal{H} \ni f \longrightarrow (\langle f, \psi_{\lambda} \rangle)_{\lambda \in \Lambda}.$$

- Preprocessing (e.g. denoising).
- Analysis (e.g. feature detection).
- Clustering/Classification.

• ...

Efficient/Sparse Representations:

$$f = \sum_{\lambda \in \Lambda} c_{\lambda} \psi_{\lambda}.$$

• Compression.

- Regularization of inverse problems.
- Ansatz functions for PDE solvers.

• ...

Representation Systems

Functional Analytic Properties:

- $(\psi_{\lambda})_{\lambda}$ can be an orthonormal basis.
 - Unique expansion.
 - Optimal stability.
- $(\psi_{\lambda})_{\lambda}$ can form a frame.
 - Non-unique/redundant expansions.
 - Flexibility in expansions $x = \sum_{\lambda \in \Lambda} c_{\lambda} \psi_{\lambda}$.
 - Stability.
 - Robustness against loss of coefficients $\langle x, \psi_{\lambda} \rangle$.

Representation Systems

Functional Analytic Properties:

- $(\psi_{\lambda})_{\lambda}$ can be an orthonormal basis.
 - Unique expansion.
 - Optimal stability.
- $(\psi_{\lambda})_{\lambda}$ can form a frame.
 - Non-unique/redundant expansions.
 - Flexibility in expansions $x = \sum_{\lambda \in \Lambda} c_{\lambda} \psi_{\lambda}$.
 - Stability.
 - Robustness against loss of coefficients $\langle x, \psi_{\lambda} \rangle$.

Definition: A sequence $(\psi_{\lambda})_{\lambda \in \Lambda} \subset \mathcal{H}$ is a frame for \mathcal{H} with frame bounds $0 < A \leq B < \infty$, if

$$A\|x\|^2 \leq \sum_{\lambda \in \Lambda} |\langle x, \psi_\lambda
angle|^2 \leq B\|x\|^2 \quad ext{ for all } x \in \mathcal{H}.$$

We call a frame tight, if A = B, and Parseval, if A = B = 1.

Frame Theory

Analysis Operator:

$$T: \mathcal{H} \to \ell_2(\Lambda), \ x \mapsto (\langle x, \psi_\lambda \rangle)_{\lambda \in \Lambda}$$

Synthesis Operator:

$$\mathcal{T}^*: \ell_2(\Lambda) o \mathcal{H}, \; (c_\lambda)_{\lambda \in \Lambda} \mapsto \sum_{\lambda \in \Lambda} c_\lambda \psi_\lambda$$

Frame Operator:

$$\mathcal{S} = \mathcal{T}^*\mathcal{T} : \mathcal{H} o \mathcal{H}, \ x \mapsto \sum_{\lambda \in \Lambda} \langle x, \psi_\lambda \rangle \, \psi_\lambda$$

Frame Theory

Analysis Operator:

$$T: \mathcal{H} \to \ell_2(\Lambda), \ x \mapsto (\langle x, \psi_\lambda \rangle)_{\lambda \in \Lambda}$$

Synthesis Operator:

$$\mathcal{T}^*: \ell_2(\Lambda) o \mathcal{H}, \ (c_\lambda)_{\lambda \in \Lambda} \mapsto \sum_{\lambda \in \Lambda} c_\lambda \psi_\lambda$$

Frame Operator:

$$\mathcal{S} = \mathcal{T}^*\mathcal{T} : \mathcal{H} o \mathcal{H}, \; x \mapsto \sum_{\lambda \in \Lambda} \langle x, \psi_\lambda
angle \psi_\lambda$$

Theorem: The frame operator is a positive, self-adjoint, and invertible operator and satisfies $A \cdot Id \leq S \leq B \cdot Id$. Thus, the following reconstruction/expansion formula holds:

$$x = \sum_{\lambda \in \Lambda} \langle x, \psi_{\lambda} \rangle \, S^{-1} \psi_{\lambda} = \sum_{\lambda \in \Lambda} \left\langle x, S^{-1} \psi_{\lambda} \right\rangle \psi_{\lambda}.$$

Gitta Kutyniok (TU Berlin)

Sparse Representations

Situation of Orthonormal Bases:

$$f = \sum_{\lambda \in \Lambda} c_{\lambda} \psi_{\lambda} = \sum_{\lambda \in \Lambda} \langle f, \psi_{\lambda} \rangle \psi_{\lambda},$$

with rapidly decaying $(\langle f, \psi_{\lambda} \rangle)_{\lambda \in \Lambda}$.

Situation of Frames:

$$f = \sum_{\lambda \in \Lambda} c_{\lambda} \psi_{\lambda} = \sum_{\lambda \in \Lambda} \langle x, \psi_{\lambda}
angle \, \mathcal{S}^{-1} \psi_{\lambda}$$

with rapidly decaying $(c_{\lambda})_{\lambda \in \Lambda}$ or $(\langle f, \psi_{\lambda} \rangle)_{\lambda \in \Lambda}$.

Sparsity

Novel Paradigm:

For each class of data, there exists a sparsifying system!

Sparsity

Novel Paradigm:

For each class of data, there exists a sparsifying system!

Two Viewpoints of 'Sparsifying System': Let $C \subseteq \mathcal{H}$ and $(\psi_{\lambda})_{\lambda} \subseteq \mathcal{H}$.

• Decay of Coefficients. Consider the decay for $n \to \infty$ of the sorted sequence of coefficients

 $(|\langle x, \psi_{\lambda_n} \rangle|)_n$ for all $x \in C$.

• Approximation Properties. Consider the decay for $N \to \infty$ of the error of best *N*-term approximation, i.e.,

$$\inf_{\#\Lambda_N=N,(c_\lambda)_\lambda} \left\|x-\sum_{\lambda\in\Lambda_N}c_\lambda\psi_\lambda\right\|\quad\text{for all }x\in\mathcal{C}.$$

Notion of Optimality

Two Viewpoints of Optimality of $(\psi_{\lambda})_{\lambda}$: Let $C \subseteq \mathcal{H}$. • Decay of Coefficients. $\beta > 0$ is largest (for all systems) with

$$|\langle x,\psi_{\lambda_n}
angle|\lesssim n^{-eta}$$
 as $n o\infty,\quad$ for all $x\in\mathcal{C}.$

 \bullet Approximation Properties. $\gamma>$ 0 is largest (for all systems) with

$$\inf_{\#\Lambda_N=N, (c_\lambda)_\lambda} \left\| x - \sum_{\lambda \in \Lambda_N} c_\lambda \psi_\lambda \right\| \lesssim N^{-\gamma} \text{ as } N \to \infty, \quad \text{for all } x \in \mathcal{C}.$$

Notion of Optimality

Two Viewpoints of Optimality of $(\psi_{\lambda})_{\lambda}$: Let $\mathcal{C} \subseteq \mathcal{H}$.

• Decay of Coefficients. $\beta > 0$ is largest (for all systems) with

$$|\langle x,\psi_{\lambda_n}
angle|\lesssim n^{-eta}$$
 as $n o\infty,\quad$ for all $x\in\mathcal{C}.$

• Approximation Properties. $\gamma > 0$ is largest (for all systems) with

$$\inf_{\#\Lambda_N=N,(c_\lambda)_\lambda} \left\|x-\sum_{\lambda\in\Lambda_N}c_\lambda\psi_\lambda\right\|\lesssim N^{-\gamma} \text{ as }N\to\infty, \quad \text{for all }x\in\mathcal{C}.$$

Situation of an ONB: For the best *N*-term approximation x_N of x, we have

$$\|x - x_N\|^2 = \sum_{\lambda \notin \Lambda_N} |c_\lambda|^2 = \sum_{n > N} |\langle x, \psi_{\lambda_n} \rangle|^2$$

Notion of Optimality

Two Viewpoints of Optimality of $(\psi_{\lambda})_{\lambda}$: Let $\mathcal{C} \subseteq \mathcal{H}$.

• Decay of Coefficients. $\beta > 0$ is largest (for all systems) with

$$|\langle x,\psi_{\lambda_n}
angle|\lesssim n^{-eta}$$
 as $n o\infty,\quad$ for all $x\in\mathcal{C}.$

• Approximation Properties. $\gamma > 0$ is largest (for all systems) with

$$\inf_{\#\Lambda_N=N,(c_\lambda)_\lambda} \left\| x - \sum_{\lambda \in \Lambda_N} c_\lambda \psi_\lambda \right\| \lesssim N^{-\gamma} \text{ as } N \to \infty, \quad \text{for all } x \in \mathcal{C}.$$

Situation of an ONB: For the best *N*-term approximation x_N of x, we have

$$\|x - x_N\|^2 = \sum_{\lambda \notin \Lambda_N} |c_\lambda|^2 = \sum_{n > N} |\langle x, \psi_{\lambda_n} \rangle|^2$$

Situation of a Frame: For the *N*-term approximation $x_N = \sum_{\lambda \in \Lambda_N} \langle x, \psi_\lambda \rangle \tilde{\psi}_\lambda$ of *x* consisting of the *N* largest coefficients $|\langle x, \psi_\lambda \rangle|$, we *only* have

$$\|x - x_N\|^2 \leq \frac{1}{A} \sum_{n > N} |\langle x, \psi_{\lambda_n} \rangle|^2.$$

Computational Harmonic Analysis

Two Main Viewpoints

Decomposition:

$$\mathcal{H} \ni f \longrightarrow (\langle f, \psi_{\lambda} \rangle)_{\lambda \in \Lambda}.$$

- Preprocessing (e.g. denoising).
- Analysis (e.g. feature detection).
- Clustering/Classification.

• ...

Efficient/Sparse Representations:

$$f=\sum_{\lambda\in\Lambda}c_{\lambda}\psi_{\lambda}.$$

• Compression.

- Regularization of inverse problems.
- Ansatz functions for PDE solvers.

• ...

Regularization of Inverse Problems

General Setting: Given $K : X \to Y$ and $y \in Y$, compute $x \in X$ with Kx = y.

Well-Posedness Conditions (Hadamard):

- Existence: For each $y \in Y$, there exists some $x \in X$ with Kx = y.
- Uniqueness: Such an $x \in X$ is unique.
- Stability: $\lim_{n\to\infty} Kx_n \to Kx$ implies $\lim_{n\to\infty} x_n \to x$.

Regularization of Inverse Problems

General Setting: Given $K : X \to Y$ and $y \in Y$, compute $x \in X$ with Kx = y.

Well-Posedness Conditions (Hadamard):

- Existence: For each $y \in Y$, there exists some $x \in X$ with Kx = y.
- Uniqueness: Such an $x \in X$ is unique.
- Stability: $\lim_{n\to\infty} Kx_n \to Kx$ implies $\lim_{n\to\infty} x_n \to x$.

III-Posed Inverse Problems:

Need for regularization!

Regularization of Inverse Problems

General Setting: Given $K : X \to Y$ and $y \in Y$, compute $x \in X$ with Kx = y.

Well-Posedness Conditions (Hadamard):

- Existence: For each $y \in Y$, there exists some $x \in X$ with Kx = y.
- Uniqueness: Such an $x \in X$ is unique.
- Stability: $\lim_{n\to\infty} Kx_n \to Kx$ implies $\lim_{n\to\infty} x_n \to x$.

III-Posed Inverse Problems:

Need for regularization!

Regularization Strategy:

A family of linear and bounded operators $R_{lpha}: Y o X$, lpha > 0, such that

$$\lim_{\alpha\to 0} R_{\alpha} K x (=: x^{\alpha}) = x \quad \text{for all } x \in X.$$

Tikhonov Regularization

Standard Tikhonov Regularization:

Given an ill-posed inverse problem Kx = y, where $K : X \to Y$, an approximate solution $x^{\alpha} \in X$, $\alpha > 0$, can be determined by minimizing

$$J_{\alpha}(x) := \|Kx - y\|^2 + \alpha \|x\|^2, \quad x \in X.$$

Tikhonov Regularization

Standard Tikhonov Regularization:

Given an ill-posed inverse problem Kx = y, where $K : X \to Y$, an approximate solution $x^{\alpha} \in X$, $\alpha > 0$, can be determined by minimizing

$$J_{\alpha}(x) := \|Kx - y\|^2 + \alpha \|x\|^2, \quad x \in X.$$

Generalization:

$$\widetilde{J}_{\alpha}(x) := \|Kx - y\|^2 + \alpha \mathcal{P}(x), \quad x \in X.$$

The penalty term ${\cal P}$

- ensures continuous dependence on the data,
- incorporates properties of the solution.

Some Examples for \mathcal{P} :

$$\|x\|_{TV}, \|x\|_{H^{s}}, \|(\langle x, \psi_{\lambda} \rangle)_{\lambda}\|_{1}, \dots$$

Tikhonov Regularization

Standard Tikhonov Regularization:

Given an ill-posed inverse problem Kx = y, where $K : X \to Y$, an approximate solution $x^{\alpha} \in X$, $\alpha > 0$, can be determined by minimizing

$$J_{\alpha}(x) := \|Kx - y\|^2 + \alpha \|x\|^2, \quad x \in X.$$

Generalization:

$$\widetilde{J}_{\alpha}(x) := \|Kx - y\|^2 + \alpha \mathcal{P}(x), \quad x \in X.$$

The penalty term ${\cal P}$

- ensures continuous dependence on the data,
- incorporates properties of the solution.

Some Examples for \mathcal{P} :

 $\|\mathbf{x}\|_{TV}, \|\mathbf{x}\|_{H^{s}}, \|(\langle x, \psi_{\lambda} \rangle)_{\lambda}\|_{1}, \dots$

Compressed Sensing (Candès, Romberg, Tao and Donoho; 2006)

Main Goal: Solve an underdetermined linear problem

$$y = Ax$$
, A an $n \times N$ -matrix with $n \ll N$,

for a solution $x \in \mathbb{R}^N$ admitting a sparsifying system $(\psi_\lambda)_\lambda$. Approach: Recover x by the ℓ_1 -analysis minimization problem

$$\min_{\tilde{x}} \| (\langle \tilde{x}, \psi_\lambda \rangle)_\lambda \|_1 \text{ subject to } y = A \tilde{x}$$

Compressed Sensing (Candès, Romberg, Tao and Donoho; 2006)

Main Goal: Solve an underdetermined linear problem

$$y = Ax$$
, A an $n \times N$ -matrix with $n \ll N$,

for a solution $x \in \mathbb{R}^N$ admitting a sparsifying system $(\psi_\lambda)_\lambda$. Approach: Recover x by the ℓ_1 -analysis minimization problem

$$\min_{\tilde{x}} \| (\langle \tilde{x}, \psi_{\lambda} \rangle)_{\lambda} \|_{1} \text{ subject to } y = A \tilde{x}$$

Why ℓ_1 ?

Compressed Sensing (Candès, Romberg, Tao and Donoho; 2006)

Main Goal: Solve an underdetermined linear problem

$$y = Ax$$
, A an $n \times N$ -matrix with $n \ll N$,

for a solution $x \in \mathbb{R}^N$ admitting a sparsifying system $(\psi_\lambda)_\lambda$. Approach: Recover x by the ℓ_1 -analysis minimization problem

$$\min_{\tilde{x}} \| (\langle \tilde{x}, \psi_\lambda \rangle)_\lambda \|_1 \text{ subject to } y = A \tilde{x}$$

Why ℓ_1 ?

Meta-Result: If $(\langle x, \psi_{\lambda} \rangle)_{\lambda}$ is sufficiently sparse, and A is sufficiently incoherent, then x can be recovered from Ax by ℓ_1 minimization.

Gitta Kutyniok (TU Berlin)

Computational Harmonic Analysis

Two Main Viewpoints

Decomposition:

$$\mathcal{H} \ni f \longrightarrow (\langle f, \psi_{\lambda} \rangle)_{\lambda \in \Lambda}.$$

- Preprocessing (e.g. denoising).
- Analysis (e.g. feature detection).
- Clustering/Classification.

• ...

Efficient/Sparse Representations:

$$f=\sum_{\lambda\in\Lambda}c_{\lambda}\psi_{\lambda}.$$

• Compression.

- Regularization of inverse problems.
- Ansatz functions for PDE solvers.

• ...

Computational Harmonic Analysis

Desiderata:

- Multiscale representation system.
- Convenient structure: Operators applied to one generating function.
- Partition of Fourier domain.
- Space/frequency localization.
- Fast algorithms: $x \mapsto (\langle x, \psi_{\lambda} \rangle)_{\lambda} \rightsquigarrow x$.

Modelling Anisotropic Structures

What is an Image?

Gitta Kutyniok (TU Berlin)

Computational Harmonic Analysis

What is an Image?

What is an Image?

Gitta Kutyniok (TU Berlin)
What is an Image?

- Intuitively edges are main structure.
- Justified by neurophysiology.

Field et al., 1993

Gitta Kutyniok (TU Berlin)

Computational Harmonic Analysis

BMS Summer School'16

21 / 59

Fitting Model

Definition (Donoho; 2001):

The set of cartoon-like functions $\mathcal{E}^2(\mathbb{R}^2)$ is defined by

$$\mathcal{E}^2(\mathbb{R}^2) = \{ f \in L^2(\mathbb{R}^2) : f = f_0 + f_1 \cdot \chi_B \},\$$

where $\emptyset \neq B \subset [0,1]^2$ simply connected with C^2 -boundary and bounded curvature, and $f_i \in C^2(\mathbb{R}^2)$ with supp $f_i \subseteq [0,1]^2$ and $\|f_i\|_{C^2} \leq 1$, i = 0, 1.

Fitting Model

Definition (Donoho; 2001):

The set of cartoon-like functions $\mathcal{E}^2(\mathbb{R}^2)$ is defined by

$$\mathcal{E}^2(\mathbb{R}^2) = \{ f \in L^2(\mathbb{R}^2) : f = f_0 + f_1 \cdot \chi_B \},\$$

where $\emptyset \neq B \subset [0,1]^2$ simply connected with C^2 -boundary and bounded curvature, and $f_i \in C^2(\mathbb{R}^2)$ with supp $f_i \subseteq [0,1]^2$ and $\|f_i\|_{C^2} \leq 1$, i = 0, 1.

Theorem (Donoho; 2001):

Let $(\psi_{\lambda})_{\lambda} \subseteq L^2(\mathbb{R}^2)$. Allowing only polynomial depth search, we have the following optimal behavior for $f \in \mathcal{E}^2(\mathbb{R}^2)$:

$$\|f - f_N\|_2^2 \asymp N^{-2}$$
 and $|\langle f, \psi_{\lambda_n} \rangle| \lesssim n^{-\frac{3}{2}}$ as $N, n \to \infty$.

Review of 2-D Wavelets

Definition (1D): Let $\phi \in L^2(\mathbb{R})$ be a scaling function and $\psi \in L^2(\mathbb{R})$ be a wavelet. Then the associated wavelet system is defined by

 $\{\phi(x-m): m \in \mathbb{Z}\} \cup \{2^{j/2} \psi(2^j x - m): j \ge 0, m \in \mathbb{Z}\}.$

Review of 2-D Wavelets

Definition (1D): Let $\phi \in L^2(\mathbb{R})$ be a scaling function and $\psi \in L^2(\mathbb{R})$ be a wavelet. Then the associated wavelet system is defined by

$$\{\phi(x-m):m\in\mathbb{Z}\}\cup\{2^{j/2}\,\psi(2^jx-m):j\geq 0,m\in\mathbb{Z}\}.$$

Definition (2D): A wavelet system is defined by $\{\phi^{(1)}(x-m): m \in \mathbb{Z}^2\} \cup \{2^j\psi^{(i)}(2^jx-m): j \ge 0, m \in \mathbb{Z}^2, i = 1, 2, 3\},$

where

$$\phi^{(1)}(x) = \phi(x_1)\phi(x_2)$$
 and $\psi^{(2)}(x) = \psi(x_1)\phi(x_2)$,
 $\psi^{(3)}(x) = \psi(x_1)\psi(x_2)$.

Theorem: Wavelets provide optimally sparse approximations for functions $f \in L^2(\mathbb{R}^2)$, which are C^2 apart from point singularities:

$$\|f - f_N\|_2^2 \asymp N^{-1}, \quad N \to \infty$$

Gitta Kutyniok (TU Berlin)

Wavelet Decomposition: JPEG2000

Gitta Kutyniok (TU Berlin)

Computational Harmonic Analysis

BMS Summer School'16 24 / 59

Wavelet Decomposition: JPEG2000

Original

25% Compression

Ţ

Gitta Kutyniok (TU Berlin)

Computational Harmonic Analysis

BMS Summer School'16

What can Wavelets do?

Problem:

- For $f \in \mathcal{E}^2(\mathbb{R}^2)$, wavelets only achieve $\|f f_N\|_2^2 \asymp N^{-1}$, $N \to \infty$.
- Isotropic structure of wavelets:

$$\{2^{j}\psi(\left(egin{array}{cc} 2^{j} & 0 \ 0 & 2^{j} \end{array}
ight)x-m):j\geq 0,m\in \mathbb{Z}^{2}\}.$$

• Wavelets cannot sparsely represent cartoon-like functions.

Intuitive explanation:

Main Goal

Design a Representation System which...

- ...fits into the framework of affine systems,
- ...provides an optimally sparsifying system for cartoons,
- ...allows for compactly supported analyzing elements,
- ... is associated with fast decomposition algorithms,
- ...treats the continuum and digital 'world' uniformly.

Main Goal

Design a Representation System which...

- ...fits into the framework of affine systems,
- ...provides an optimally sparsifying system for cartoons,
- ...allows for compactly supported analyzing elements,
- ... is associated with fast decomposition algorithms,
- ...treats the continuum and digital 'world' uniformly.

Non-Exhaustive List of Approaches:

- Ridgelets (Candès and Donoho; 1999)
- Curvelets (Candès and Donoho; 2002)
- Contourlets (Do and Vetterli; 2002)
- Bandlets (LePennec and Mallat; 2003)
- Shearlets (K and Labate; 2006)

What is a Shearlet?

Scaling and Orientation

Parabolic scaling ('width \approx length²'):

$$oldsymbol{A}_{2^j}=\left(egin{array}{cc} 2^j & 0\ 0 & 2^{j/2} \end{array}
ight), \quad j\in\mathbb{Z}.$$

Historical remark:

• 1970's: Fefferman und Seeger/Sogge/Stein.

Scaling and Orientation

Parabolic scaling ('width \approx length²'):

$$egin{array}{lll} {\mathcal A}_{2^j}=\left(egin{array}{cc} 2^j & 0 \ 0 & 2^{j/2} \end{array}
ight), & j\in {\mathbb Z}. \end{array}$$

Historical remark:

• 1970's: Fefferman und Seeger/Sogge/Stein.

Orientation via shearing:

$$S_k = \left(egin{array}{cc} 1 & k \ 0 & 1 \end{array}
ight), \quad k \in \mathbb{Z}.$$

Advantage:

- \bullet Shearing leaves the digital grid \mathbb{Z}^2 invariant.
- Uniform theory for the continuum and digital situation.

Shearlet Systems

Affine systems:

$$\{|\det M|^{1/2}\psi(M \cdot -m): M \in G \subseteq GL_2, \ m \in \mathbb{Z}^2\}.$$

Definition (K, Labate; 2006): For $\psi \in L^2(\mathbb{R}^2)$, the associated shearlet system is defined by

$$\{2^{\frac{3j}{4}}\psi(S_kA_{2^j}\cdot -m): j,k\in\mathbb{Z},m\in\mathbb{Z}^2\}.$$

Remarks:

- Advantage: Generated by a unitary representation of the locally compact group (ℝ⁺ × ℝ) ⋉ ℝ², the so-called shearlet group.
- Disadvantage: Non-uniform treatment of directions.

Example of Classical (Band-Limited) Shearlet

Let $\psi \in L^2(\mathbb{R}^2)$ be defined by

$$\hat{\psi}(\xi) = \hat{\psi}(\xi_1, \xi_2) = \hat{\psi}_1(\xi_1) \, \hat{\psi}_2(\frac{\xi_2}{\xi_1}),$$

where

- ψ_1 wavelet, $\mathrm{supp}(\hat{\psi}_1) \subseteq [-2, -\frac{1}{2}] \cup [\frac{1}{2}, 2]$ and $\hat{\psi}_1 \in C^\infty(\mathbb{R})$,
- ψ_2 'bump function', $\operatorname{supp}(\hat{\psi}_2) \subseteq [-1,1]$ and $\hat{\psi}_2 \in C^{\infty}(\mathbb{R})$.

Example of Classical (Band-Limited) Shearlet

Let $\psi \in L^2(\mathbb{R}^2)$ be defined by

$$\hat{\psi}(\xi) = \hat{\psi}(\xi_1, \xi_2) = \hat{\psi}_1(\xi_1) \, \hat{\psi}_2(\frac{\xi_2}{\xi_1}),$$

where

- ψ_1 wavelet, $\mathrm{supp}(\hat{\psi}_1) \subseteq [-2, -\frac{1}{2}] \cup [\frac{1}{2}, 2]$ and $\hat{\psi}_1 \in \mathcal{C}^\infty(\mathbb{R})$,
- ψ_2 'bump function', $\operatorname{supp}(\hat{\psi}_2) \subseteq [-1,1]$ and $\hat{\psi}_2 \in C^{\infty}(\mathbb{R})$.

Induced tiling of Fourier domain:

Example of Classical (Band-Limited) Shearlet

Let $\psi \in L^2(\mathbb{R}^2)$ be defined by

$$\hat{\psi}(\xi) = \hat{\psi}(\xi_1, \xi_2) = \hat{\psi}_1(\xi_1) \, \hat{\psi}_2(\frac{\xi_2}{\xi_1}),$$

where

- ψ_1 wavelet, $\mathrm{supp}(\hat{\psi}_1) \subseteq [-2, -\frac{1}{2}] \cup [\frac{1}{2}, 2]$ and $\hat{\psi}_1 \in C^\infty(\mathbb{R})$,
- ψ_2 'bump function', $\operatorname{supp}(\hat{\psi}_2) \subseteq [-1,1]$ and $\hat{\psi}_2 \in C^{\infty}(\mathbb{R})$.

(Cone-adapted) Shearlet Systems

Definition (K, Labate; 2006):

The (cone-adapted) shearlet system $\mathcal{SH}(c; \phi, \psi, \tilde{\psi})$, c > 0, generated by $\phi \in L^2(\mathbb{R}^2)$ and $\psi, \tilde{\psi} \in L^2(\mathbb{R}^2)$ is the union of

$$\{\phi(\cdot - cm) : m \in \mathbb{Z}^2\},\$$

$$\begin{split} &\{2^{3j/4}\psi(S_kA_{2^j}\cdot -cm): j\geq 0, |k|\leq \lceil 2^{j/2}\rceil, m\in \mathbb{Z}^2\},\\ &\{2^{3j/4}\tilde{\psi}(\tilde{S}_k\tilde{A}_{2^j}\cdot -cm): j\geq 0, |k|\leq \lceil 2^{j/2}\rceil, m\in \mathbb{Z}^2\}. \end{split}$$

(Cone-adapted) Shearlet Systems

Definition (K, Labate; 2006):

The (cone-adapted) shearlet system $\mathcal{SH}(c; \phi, \psi, \tilde{\psi})$, c > 0, generated by $\phi \in L^2(\mathbb{R}^2)$ and $\psi, \tilde{\psi} \in L^2(\mathbb{R}^2)$ is the union of

$$\{\phi(\cdot - cm) : m \in \mathbb{Z}^2\},$$

 $\{2^{3j/4}\psi(S_kA_{2j} \cdot -cm) : j \ge 0, |k| \le \lceil 2^{j/2} \rceil, m \in \mathbb{Z}^2\},$
 $\{2^{3j/4}\tilde{\psi}(\tilde{S}_k\tilde{A}_{2j} \cdot -cm) : j \ge 0, |k| \le \lceil 2^{j/2} \rceil, m \in \mathbb{Z}^2\}.$

Theorem (K, Labate, Lim, Weiss; 2006): For $\psi, \tilde{\psi}$ classical shearlets, $SH(1; \phi, \psi, \tilde{\psi})$ is a Parseval frame for $L^2(\mathbb{R}^2)$:

$$A\|f\|_2^2 \leq \sum_{\sigma \in \mathcal{SH}(\phi,\psi,\tilde{\psi})} |\langle f,\sigma\rangle|^2 \leq B\|f\|_2^2 \quad \text{for all } f \in L^2(\mathbb{R}^2)$$

holds for A = B = 1.

Proof of Parseval Frame Property

Specific conditions on a classical shearlet $\hat{\psi}(\xi_1, \xi_2) = \hat{\psi}_1(\xi_1) \hat{\psi}_2(\frac{\xi_2}{\xi_1})$:

- Wavelet: $\sum_{j\in\mathbb{Z}}|\hat{\psi}_1(2^{-j}\xi)|^2=1$ for a.e. $\xi\in\mathbb{R}.$
- 'Bump Function': $\sum_{k=-1,0,1} |\hat{\psi}_2(\xi+k)|^2 = 1$ for a.e. $\xi \in [-1,1]$.

By the above properties of ψ_1 and ψ_2 , we have

$$\begin{split} &\sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} |\hat{\psi}(S_{-k}^{\mathsf{T}} A_{-j} \xi)|^2 \\ &= \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} |\hat{\psi}(2^{-j} \xi_1, 2^{-j/2} \xi_2 - 2^{-j} \xi_1 k)|^2 \\ &= \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} |\hat{\psi}_1(2^{-j} \xi_1)|^2 |\hat{\psi}_2(2^{j/2} \frac{\xi_2}{\xi_1} - k)|^2 \\ &= \sum_{j \in \mathbb{Z}} |\hat{\psi}_1(2^{-j} \xi_1)|^2 = 1. \end{split}$$

Compactly Supported Shearlets

Theorem (Kittipoom, K, Lim; 2012):

Let $\phi, \psi, \tilde{\psi} \in L^2(\mathbb{R}^2)$ be compactly supported, and let $\hat{\phi}, \hat{\psi}, \tilde{\psi}$ satisfy certain decay conditions. Then there exists c_0 such that $S\mathcal{H}(c; \phi, \psi, \tilde{\psi})$ forms a shearlet frame with controllable frame bounds for all $c \leq c_0$.

Remark: Exemplary class with $B/A \approx 4$.

Compactly Supported Shearlets

Theorem (Kittipoom, K, Lim; 2012):

Let $\phi, \psi, \tilde{\psi} \in L^2(\mathbb{R}^2)$ be compactly supported, and let $\hat{\phi}, \hat{\psi}, \hat{\psi}$ satisfy certain decay conditions. Then there exists c_0 such that $S\mathcal{H}(c; \phi, \psi, \tilde{\psi})$ forms a shearlet frame with controllable frame bounds for all $c \leq c_0$.

Remark: Exemplary class with $B/A \approx 4$.

Theorem (Guo, Labate; 2007)(K, Lim; 2011):

Let $\phi, \psi, \tilde{\psi} \in L^2(\mathbb{R}^2)$ be compactly supported, and let $\hat{\phi}, \hat{\psi}, \hat{\psi}$ satisfy certain decay conditions. Then $\mathcal{SH}(c; \phi, \psi, \tilde{\psi}) = (\sigma_\eta)_\eta$ provides an optimally sparsifying system for $f \in \mathcal{E}^2(\mathbb{R}^2)$, i.e., for $N, n \to \infty$,

$$|f - f_{\mathcal{N}}||_2^2 \lesssim \mathcal{N}^{-2} (\log \mathcal{N})^3 \text{ and } |\langle f, \sigma_{\eta_n} \rangle| \lesssim n^{-\frac{3}{2}} (\log n)^{\frac{3}{2}}.$$

Estimate:

Computational Harmonic Analysis

Estimate:

Computational Harmonic Analysis

Estimate:

Computational Harmonic Analysis

Estimate:

Computational Harmonic Analysis

Recent Approaches to Fast Shearlet Transforms

www.ShearLab.org:

- Separable Shearlet Transform (Lim; 2009)
- Digital Shearlet Transform (K, Shahram, Zhuang; 2011)
- 2D&3D (parallelized) Shearlet Transform (K, Lim, Reisenhofer; 2013)

Additional Code:

- Filter-based implementation (Easley, Labate, Lim; 2009)
- Fast Finite Shearlet Transform (Häuser, Steidl; 2014)
- Shearlet Toolbox 2D&3D (Easley, Labate, Lim, Negy; 2014)

Theoretical Approaches:

- Adaptive Directional Subdivision Schemes (K, Sauer; 2009)
- Shearlet Unitary Extension Principle (Han, K, Shen; 2011)
- Gabor Shearlets (Bodmann, K, Zhuang; 2013)

What about Curvelets ...?

Curvelets

Definition (Candès, Donoho; 2002):

Let

- $W \in C^{\infty}(\mathbb{R})$ be a wavelet with supp $(W) \subseteq (\frac{1}{2}, 2)$,
- $V \in C^{\infty}(\mathbb{R})$ be a 'bump function' with supp $(V) \subseteq (-1,1)$.

Then the curvelet system $(\gamma_{(j,l,k)})_{(j,l,k)}$ is defined by

$$\hat{\gamma}_{(j,0,0)}(r,\omega) := 2^{-3j/4} W\left(2^{-j}r\right) V(2^{\lfloor j/2 \rfloor}\omega)$$

and

$$\gamma_{(j,l,k)}(\cdot) := \gamma_{(j,0,0)}(R_{\theta_{(j,l,k)}}(\cdot - x_{(j,l,k)})).$$

Theorem (Candès, Donoho; 2002): The curvelet system forms a Parseval frame for $L^2(\mathbb{R}^2)$.

Comparison with Shearlets, I

Main Differences to Shearlets:

- Not affine systems.
- Based on rotation in contrast to shearing.
- Only band-limited version available.

Performance on Separation:

But there are also many Similarities...

Theorem (Candès, Donoho; 2002): Curvelets provide optimally sparse approximations of $f \in \mathcal{E}^2(\mathbb{R}^2)$, i.e.,

$$\|f - f_N\|_2^2 \leq C \cdot N^{-2} \cdot (\log N)^3, \quad N \to \infty.$$

Towards a General Framework...

General Framework

Introduce a Framework which...

- ...covers all systems known to sparsify cartoons.
- ...enables easy transfer of (sparsity) results between systems.
- ...allows categorization of systems with respect to sparsity behaviors.
- ...is general enough to allow construction of novel systems.

General Framework

Introduce a Framework which

- ...covers all systems known to sparsify cartoons.
- ...enables easy transfer of (sparsity) results between systems.
- ...allows categorization of systems with respect to sparsity behaviors.
- ...is general enough to allow construction of novel systems.

Crucial Ingredient: Parabolic scaling, i.e., a scaling matrix of the type

$$A_{2j} = \begin{pmatrix} 2^{j} & 0\\ 0 & 2^{j/2} \end{pmatrix}, \quad j \in \mathbb{Z},$$

since from
$$E(x_{2}) \approx \frac{1}{2}\kappa x_{2}^{2} \quad \text{and} \quad E(\ell) = w$$

follows
$$w \approx \frac{\kappa}{2}\ell^{2} \qquad (`width \approx length^{2}').$$

since

Parametrization

Parameter space:

$$\mathbb{P} := \mathbb{R}_+ imes \mathbb{T} imes \mathbb{R}^2,$$

where $(s, \theta, x) \in \mathbb{P}$ describes scale 2^s , orientation θ , and location x.

Definition: A parametrization is a pair $(\Lambda, \Phi_{\Lambda})$, where Λ is a discrete index set and Φ_{Λ} is a mapping

$$\Phi_{\Lambda}: \left\{ egin{array}{cc} \Lambda & o & \mathbb{P}, \ \lambda & \mapsto & (\pmb{s}_{\lambda}, \pmb{ heta}_{\lambda}, \pmb{x}_{\lambda}) \,. \end{array}
ight.$$

Parametrization

Parameter space:

$$\mathbb{P} := \mathbb{R}_+ imes \mathbb{T} imes \mathbb{R}^2,$$

where $(s, \theta, x) \in \mathbb{P}$ describes scale 2^s , orientation θ , and location x.

Definition: A parametrization is a pair $(\Lambda, \Phi_{\Lambda})$, where Λ is a discrete index set and Φ_{Λ} is a mapping

$$\Phi_{eta}: \left\{ egin{array}{ccc} egin{array}{ccc} \Lambda & o & \mathbb{P}, \ \lambda & \mapsto & (m{s}_{\lambda}, m{ heta}_{\lambda}, x_{\lambda}) \,. \end{array}
ight.$$

Example: The canonical parametrization $(\Lambda^0, \Phi^0(\lambda))$ is defined by

$$\Lambda^{\mathsf{0}} := \left\{ (j,\ell,k) \in \mathbb{Z}^{\mathsf{4}} \ : \ j \geq \mathsf{0}, \ \ell = -2^{\lfloor \frac{j}{2} \rfloor - 1}, \cdots, 2^{\lfloor \frac{j}{2} \rfloor - 1} \right\}$$

and

$$\Phi^{0}(j,\ell,k) = (s_{\lambda},\theta_{\lambda},x_{\lambda}) = (j,\ell 2^{-\lfloor j/2 \rfloor}\pi, R_{-\theta_{\lambda}}A_{2^{-s_{\lambda}}}k).$$

Parabolic Molecules

Definition (Grohs, K; 2014):

Let $(\Lambda, \Phi_{\Lambda})$ be a parametrization. Then $(m_{\lambda})_{\lambda \in \Lambda}$ is a system of parabolic molecules of order $(L, M, N_1, N_2) \in (\mathbb{Z}_+ \cup \{\infty\})^2 \times \mathbb{Z}_+^2$, if, for all $\lambda \in \Lambda$,

$$m_{\lambda}(x) = 2^{3s_{\lambda}/4}g^{(\lambda)}\left(A_{2^{s_{\lambda}}}R_{\theta_{\lambda}}(x-x_{\lambda})
ight), \quad \Phi_{\Lambda}(\lambda) = (s_{\lambda}, \theta_{\lambda}, x_{\lambda}),$$

such that, for all $|\beta| \leq L$,

$$\left|\partial^{eta} \hat{g}^{(\lambda)}(\xi)
ight|\lesssim \min\left(1,2^{-s_{\lambda}}+|\xi_{1}|+2^{-s_{\lambda}/2}|\xi_{2}|
ight)^{M}\langle|\xi|
ight
angle^{-N_{1}}\langle\xi_{2}
angle^{-N_{2}}$$

Control Parameters:

- L: Spatial localization.
- M: Number of directional (almost) vanishing moments.
- N_1, N_2 : Smoothness of m_{λ} .

Parabolic Molecules

Definition (Grohs, K; 2014):

Let $(\Lambda, \Phi_{\Lambda})$ be a parametrization. Then $(m_{\lambda})_{\lambda \in \Lambda}$ is a system of parabolic molecules of order $(L, M, N_1, N_2) \in (\mathbb{Z}_+ \cup \{\infty\})^2 \times \mathbb{Z}_+^2$, if, for all $\lambda \in \Lambda$,

$$m_{\lambda}(x) = 2^{3s_{\lambda}/4}g^{(\lambda)}\left(A_{2^{s_{\lambda}}}R_{\theta_{\lambda}}(x-x_{\lambda})\right), \quad \Phi_{\Lambda}(\lambda) = (s_{\lambda}, \theta_{\lambda}, x_{\lambda}),$$

such that, for all $|\beta| \leq L$,

$$\left|\partial^{\beta}\hat{g}^{(\lambda)}(\xi)\right| \lesssim \min\left(1, 2^{-\mathfrak{s}_{\lambda}} + |\xi_{1}| + 2^{-\mathfrak{s}_{\lambda}/2}|\xi_{2}|\right)^{M} \langle |\xi| \rangle^{-N_{1}} \langle \xi_{2} \rangle^{-N_{2}}.$$

Illustration:

Special Cases

This framework includes...

- Parabolic Frame (Smith; 1998)
- Second Generation Curvelets (Candès and Donoho; 2002)
- Curvelet Molecules (Candès and Demanet; 2002)
- Bandlimited Shearlets (K and Labate; 2006)
- Frame Decompositions (Borup and Nielsen; 2007)
- Shearlet Molecules (Guo and Labate; 2008)
- Compactly Supported Shearlets (Kittipoom, K, and Lim; 2012)

• ...

What about Wavelets, Ridgelets,...?

Extension of Framework

Main Idea:

- Introduction of a parameter $\alpha \in [0,1]$ to measure the amount of anisotropy.
- For *a* > 0, define

$$A_{lpha, a} = \left(egin{array}{cc} a & 0 \ 0 & a^lpha \end{array}
ight).$$

Illustration:

α -Molecules

Definition (Grohs, Keiper, K, Schäfer; 2016):

Let $\alpha \in [0, 1]$, and let $(\Lambda, \Phi_{\Lambda})$ be a parametrization. Then $(m_{\lambda})_{\lambda \in \Lambda}$ is a system of α -molecules of order $(L, M, N_1, N_2) \in (\mathbb{Z}_+ \cup \{\infty\})^2 \times \mathbb{Z}_+^2$, if, for all $\lambda \in \Lambda$,

$$m_{\lambda}(x) = s_{\lambda}^{(1+\alpha)/2} g^{(\lambda)} \left(A_{\alpha,s_{\lambda}} R_{\theta_{\lambda}} \left(x - x_{\lambda} \right) \right), \quad \Phi_{\Lambda}(\lambda) = (s_{\lambda}, \theta_{\lambda}, x_{\lambda}),$$

such that, for all $|\beta| \leq L$,

$$\left|\partial^{eta} \hat{g}^{(\lambda)}(\xi)
ight|\lesssim \min\left(1,s_{\lambda}^{-1}+|\xi_{1}|+s_{\lambda}^{-(1-lpha)}|\xi_{2}|
ight)^{M}\langle|\xi|
angle^{-N_{1}}\langle\xi_{2}
angle^{-N_{2}}$$

α -Molecules

Definition (Grohs, Keiper, K, Schäfer; 2016):

Let $\alpha \in [0, 1]$, and let $(\Lambda, \Phi_{\Lambda})$ be a parametrization. Then $(m_{\lambda})_{\lambda \in \Lambda}$ is a system of α -molecules of order $(L, M, N_1, N_2) \in (\mathbb{Z}_+ \cup \{\infty\})^2 \times \mathbb{Z}_+^2$, if, for all $\lambda \in \Lambda$,

$$m_{\lambda}(x) = s_{\lambda}^{(1+\alpha)/2} g^{(\lambda)} \left(A_{\alpha,s_{\lambda}} R_{\theta_{\lambda}} \left(x - x_{\lambda} \right) \right), \quad \Phi_{\Lambda}(\lambda) = (s_{\lambda}, \theta_{\lambda}, x_{\lambda}),$$

such that, for all $|\beta| \leq L$,

$$\left|\partial^{eta} \hat{g}^{(\lambda)}(\xi)
ight|\lesssim \min\left(1,s_{\lambda}^{-1}+|\xi_{1}|+s_{\lambda}^{-(1-lpha)}|\xi_{2}|
ight)^{M}\langle|\xi|
angle^{-N_{1}}\langle\xi_{2}
angle^{-N_{2}}$$

Examples:

- Wavelets ($\alpha = 1$)
- Ridgelets ($\alpha = 0$)
- Shearlets, parabolic molecules in general $(\alpha = \frac{1}{2})$

•
$$\alpha$$
-Curvelets ($lpha \in [0,1]$)

Metric Properties of Parametrizations

Definition:

Let $\alpha \in [0, 1]$, and let $(\Lambda, \Phi_{\Lambda})$ and (Δ, Φ_{Δ}) be parametrizations. For $\lambda \in \Lambda$ and $\mu \in \Delta$, we define the index distance by

$$\omega_{\alpha}\left(\lambda,\mu\right) := \omega_{\alpha}\left(\Phi_{\Lambda}(\lambda),\Phi_{\Delta}(\mu)\right) := \max\left\{\frac{s_{\lambda}}{s_{\mu}},\frac{s_{\mu}}{s_{\lambda}}\right\}\left(1+d_{\alpha}\left(\lambda,\mu\right)\right),$$

with $d_{lpha}\left(\lambda,\mu
ight)$ defined by

$$s_0^{2(1-lpha)}| heta_\lambda - heta_\mu|^2 + s_0^{2lpha}|x_\lambda - x_\mu|^2 + rac{s_0^2}{1 + s_0^{2(1-lpha)}| heta_\lambda - heta_\mu|^2}|\langle e_\lambda, x_\lambda - x_\mu
angle|^2.$$

where $s_0 = \min\{s_{\lambda}, s_{\mu}\}$ and $e_{\lambda} = (\cos(\theta_{\lambda}), -\sin(\theta_{\lambda}))^T$.

Remark: $d_{\frac{1}{2}}$ is the Hart Smith's phase space metric on $\mathbb{T} \times \mathbb{R}^2$.

Theorem (Grohs, Keiper, K, Schäfer; 2016): Let $\alpha \in [0, 1]$, N > 0, and let $(m_{\lambda})_{\lambda \in \Lambda}$, $(p_{\mu})_{\mu \in \Delta}$ be systems of α -molecules of order (L, M, N_1, N_2) with

$$L \geq 2N$$
, $M > 3N - \frac{3-\alpha}{2}$, $N_1 \geq N + \frac{1+\alpha}{2}$, $N_2 \geq 2N$.

Then, for all $\lambda \in \Lambda$ and $\mu \in \Delta$,

$$|\langle m_{\lambda}, p_{\mu} \rangle| \lesssim \omega_{lpha} \left(\lambda, \mu\right)^{-N}.$$

...towards Sparse Approximation Properties!

Sparsity Equivalence

Definition:

Let $(m_{\lambda})_{\lambda \in \Lambda}$ and $(p_{\mu})_{\mu \in \Delta}$ be systems of α -molecules of order (L, M, N_1, N_2) and $(\tilde{L}, \tilde{M}, \tilde{N_1}, \tilde{N_2})$, respectively, and let 0 . If

$$\left\|\left(\langle m_{\lambda}, p_{\mu}\rangle\right)_{\lambda\in\Lambda,\mu\in\Delta}\right\|_{\ell^{p}\to\ell^{p}}<\infty,$$

then $(m_{\lambda})_{\lambda \in \Lambda}$ and $(p_{\mu})_{\mu \in \Delta}$ are sparsity equivalent in ℓ^{p} .

Sparsity Equivalence

Definition:

Let $(m_{\lambda})_{\lambda \in \Lambda}$ and $(p_{\mu})_{\mu \in \Delta}$ be systems of α -molecules of order (L, M, N_1, N_2) and $(\tilde{L}, \tilde{M}, \tilde{N}_1, \tilde{N}_2)$, respectively, and let 0 . If

$$\left\|\left(\langle m_{\lambda}, p_{\mu}\rangle\right)_{\lambda\in\Lambda,\mu\in\Delta}\right\|_{\ell^{p}\to\ell^{p}}<\infty,$$

then $(m_{\lambda})_{\lambda \in \Lambda}$ and $(p_{\mu})_{\mu \in \Delta}$ are sparsity equivalent in ℓ^{p} .

Definition:

Let $\alpha \in [0,1]$ and k > 0. Two parametrizations $(\Lambda, \Phi_{\Lambda})$ and (Δ, Φ_{Δ}) are (α, k) -consistent, if

$$\sup_{\lambda\in\Lambda}\sum_{\mu\in\Delta}\omega_{\alpha}\left(\lambda,\mu\right)^{-k}<\infty\quad\text{and}\quad \sup_{\mu\in\Delta}\sum_{\lambda\in\Lambda}\omega_{\alpha}\left(\lambda,\mu\right)^{-k}<\infty.$$

Theorem (Grohs, Keiper, K, Schäfer; 2016):

Let $0 , and let <math>(m_{\lambda})_{\lambda \in \Lambda}$ and $(p_{\mu})_{\mu \in \Delta}$ be frames of α -molecules of order (L, M, N_1, N_2) with (α, k) -consistent parametrizations $(\Lambda, \Phi_{\Lambda})$ and (Δ, Φ_{Δ}) for some k > 0. If

$$L \geq 2\frac{k}{p}, \quad M > 3\frac{k}{p} - \frac{3-\alpha}{2}, \quad N_1 \geq \frac{k}{p} + \frac{1+\alpha}{2}, \quad N_2 \geq 2\frac{k}{p},$$

then $(m_{\lambda})_{\lambda \in \Lambda}$ and $(p_{\mu})_{\mu \in \Delta}$ are sparsity equivalent in ℓ^{p} .

Strategy

Gitta Kutyniok (TU Berlin)

Computational Harmonic Analysis

Generalized Image Model

Definition (K, Lemvig, Lim; 2012), (Keiper; 2012): The set of cartoon-like functions $\mathcal{E}^{\beta}(\mathbb{R}^2)$, $\beta \in (1,2]$ is defined by

$$\mathcal{E}^{\beta}(\mathbb{R}^2) = \{ f \in L^2(\mathbb{R}^2) : f = f_0 + f_1 \cdot \chi_B \},\$$

where $B \subset [0,1]^2$ with ∂B a closed C^{β} -curve, $f_0, f_1 \in C_0^{\beta}([0,1]^2)$.

Generalized Image Model

Definition (K, Lemvig, Lim; 2012), (Keiper; 2012): The set of cartoon-like functions $\mathcal{E}^{\beta}(\mathbb{R}^2)$, $\beta \in (1, 2]$ is defined by

$$\mathcal{E}^{\beta}(\mathbb{R}^2) = \{ f \in L^2(\mathbb{R}^2) : f = f_0 + f_1 \cdot \chi_B \},\$$

where $B \subset [0,1]^2$ with ∂B a closed C^{β} -curve, $f_0, f_1 \in C_0^{\beta}([0,1]^2)$.

Theorem (Grohs, Keiper, K, Schäfer; 2016): Let $\alpha \in [\frac{1}{2}, 1)$, $\beta = \alpha^{-1}$. The Parseval frame of α -curvelets provides an optimally sparse approximation of $f \in \mathcal{E}^{\beta}(\mathbb{R}^2)$, i.e.,

$$\|f - f_N\|_2^2 \leq C \cdot N^{-\beta} \cdot (\log N)^{\beta+1}, \quad N \to \infty.$$

Sparse Approximation with $\alpha\text{-Molecules}$

Theorem (Grohs, Keiper, K, Schäfer; 2016): Let $\alpha \in [\frac{1}{2}, 1)$, $\beta = \alpha^{-1}$, and let $(m_{\lambda})_{\lambda \in \Lambda}$ be a system of α -molecules of order (L, M, N_1, N_2) such that

- (i) $(m_{\lambda})_{\lambda \in \Lambda}$ constitutes a frame for $L^2(\mathbb{R}^2)$,
- (ii) $(\Lambda, \Phi_{\Lambda})$ is (α, k) -consistent with the parametrization of α -curvelets for all k > 0,
- (iii) it holds that

$$L \geq k(1+\beta), M \geq \frac{3k}{2}(1+\beta) + \frac{\alpha-3}{2}, N_1 \geq \frac{k}{2}(1+\beta) + \frac{1+\alpha}{2}, N_2 \geq k(1+\beta).$$

Then, for any $\varepsilon > 0$ and for any $f \in \mathcal{E}^{\beta}(\mathbb{R}^2)$, $(m_{\lambda})_{\lambda \in \Lambda}$ satisfies

$$\|f-f_N\|_2^2 \leq C \cdot N^{-\beta+\varepsilon}, \quad N \to \infty,$$

Let's conclude...

What to take Home ...?

- Computational Harmonic Analysis provides various representation systems such as wavelets, ridgelets, curvelets, and shearlets.
- They provide sparse approximation for certain classes of images, leading to
 - ▶ Efficient decompositions for, e.g., the analysis/processing of images.
 - ► Sparse representations for, e.g., regularization of inverse problems.
- Shearlets provide an optimally sparsifying system for a model class of functions being governed by anisotropic features.
- α -Molecules provide a general framework for various systems from computational harmonic analysis.
- Sparse approximation results can be derived in a unified manner.

THANK YOU!

References available at:

www.math.tu-berlin.de/~kutyniok

Code available at:

www.ShearLab.org

Related Books:

- Y. Eldar and G. Kutyniok Compressed Sensing: Theory and Applications Cambridge University Press, 2012.
- G. Kutyniok and D. Labate Shearlets: Multiscale Analysis for Multivariate Data Birkhäuser-Springer, 2012.

