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Imaging Science Today

Due to the data deluge, the area of imaging science is of tremendous
importance in today’s world.

Main Tasks

Acquisition

Preprocessing
I Denoising, Inpainting, ...

Analysis
I Feature Detection, ...

Storing
I Compression, ...

What has Computational Harmonic Analysis to offer?
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Computational Harmonic Analysis

Representation systems designed by Computational Harmonic Analysis
concepts have established themselves as a standard tool in applied
mathematics, computer science, and engineering.

Examples:

Wavelets.

Ridgelets.

Curvelets.

Shearlets.

...

Key Property:
Fast Algorithms combined with Sparse Approximation Properties!
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An Computational Harmonic Analysis Viewpoint

Exploit a carefully designed representation system (ψλ)λ∈Λ ⊆ H:

H 3 f −→ (〈f , ψλ〉)λ∈Λ −→
∑
λ∈Λ

〈f , ψλ〉ψλ = f .

Desiderata:

Special features encoded in the “large” coefficients | 〈f , ψλ〉 |.
Efficient representations:

f ≈
∑
λ∈ΛN

〈f , ψλ〉ψλ, #(ΛN) small

Goals:

Modification of the coefficients according to the task.

Derive high compression by considering only the “large” coefficients.
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Two Main Viewpoints

Decomposition:

H 3 f −→ (〈f , ψλ〉)λ∈Λ.

Preprocessing (e.g. denoising).

Analysis (e.g. feature detection).

Clustering/Classification.

...

Efficient/Sparse Representations:

f =
∑
λ∈Λ

cλψλ.

Compression.

Regularization of inverse problems.

Ansatz functions for PDE solvers.

...
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Decomposition

Denoising (Preprocessing):

H 3 f −→ (〈f , ψλ〉)λ∈Λ −→ (〈f , ψλ〉)λ∈Λ\Λ0
 f̃ .

−→

Edge Detection (Analysis):

H 3 f −→ (〈f , ψλ〉)λ∈Λ −→ (〈f , ψλ〉)λ∈Λ1  f̃ .

−→

Gitta Kutyniok (TU Berlin) Computational Harmonic Analysis BMS Summer School’16 7 / 59



Decomposition

Denoising (Preprocessing):

H 3 f −→ (〈f , ψλ〉)λ∈Λ −→ (〈f , ψλ〉)λ∈Λ\Λ0
 f̃ .

−→

Edge Detection (Analysis):

H 3 f −→ (〈f , ψλ〉)λ∈Λ −→ (〈f , ψλ〉)λ∈Λ1  f̃ .

−→

Gitta Kutyniok (TU Berlin) Computational Harmonic Analysis BMS Summer School’16 7 / 59



Two Main Viewpoints

Decomposition:

H 3 f −→ (〈f , ψλ〉)λ∈Λ.

Preprocessing (e.g. denoising).

Analysis (e.g. feature detection).

Clustering/Classification.

...

Efficient/Sparse Representations:

f =
∑
λ∈Λ

cλψλ.

Compression.

Regularization of inverse problems.

Ansatz functions for PDE solvers.

...
Gitta Kutyniok (TU Berlin) Computational Harmonic Analysis BMS Summer School’16 8 / 59



Representation Systems

Functional Analytic Properties:

(ψλ)λ can be an orthonormal basis.
I Unique expansion.
I Optimal stability.

(ψλ)λ can form a frame.
I Non-unique/redundant expansions.
I Flexibility in expansions x =

∑
λ∈Λ cλψλ.

I Stability.
I Robustness against loss of coefficients 〈x , ψλ〉.

Definition: A sequence (ψλ)λ∈Λ ⊂ H is a frame for H with frame bounds
0 < A ≤ B <∞, if

A‖x‖2 ≤
∑
λ∈Λ

|〈x , ψλ〉|2 ≤ B‖x‖2 for all x ∈ H.

We call a frame tight, if A = B, and Parseval, if A = B = 1.
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Frame Theory

Analysis Operator:

T : H → `2(Λ), x 7→ (〈x , ψλ〉)λ∈Λ

Synthesis Operator:

T ∗ : `2(Λ)→ H, (cλ)λ∈Λ 7→
∑
λ∈Λ

cλψλ

Frame Operator:

S = T ∗T : H → H, x 7→
∑
λ∈Λ

〈x , ψλ〉ψλ

Theorem: The frame operator is a positive, self-adjoint, and invertible
operator and satisfies A · Id ≤ S ≤ B · Id . Thus, the following
reconstruction/expansion formula holds:

x =
∑
λ∈Λ

〈x , ψλ〉S−1ψλ =
∑
λ∈Λ

〈
x ,S−1ψλ

〉
ψλ.
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Sparse Representations

Situation of Orthonormal Bases:

f =
∑
λ∈Λ

cλψλ =
∑
λ∈Λ

〈f , ψλ〉ψλ,

with rapidly decaying (〈f , ψλ〉)λ∈Λ.

Situation of Frames:

f =
∑
λ∈Λ

cλψλ =
∑
λ∈Λ

〈x , ψλ〉 S−1ψλ

with rapidly decaying (cλ)λ∈Λ or (〈f , ψλ〉)λ∈Λ.
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Sparsity

Novel Paradigm:

For each class of data, there exists a sparsifying system!

Two Viewpoints of ‘Sparsifying System’:
Let C ⊆ H and (ψλ)λ ⊆ H.

Decay of Coefficients. Consider the decay for n→∞ of the sorted
sequence of coefficients

(|〈x , ψλn〉|)n for all x ∈ C.

Approximation Properties. Consider the decay for N →∞ of the
error of best N-term approximation, i.e.,

inf
#ΛN=N,(cλ)λ

∥∥∥x − ∑
λ∈ΛN

cλψλ

∥∥∥ for all x ∈ C.
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Notion of Optimality

Two Viewpoints of Optimality of (ψλ)λ: Let C ⊆ H.

Decay of Coefficients. β > 0 is largest (for all systems) with

|〈x , ψλn〉| . n−β as n→∞, for all x ∈ C.

Approximation Properties. γ > 0 is largest (for all systems) with

inf
#ΛN=N,(cλ)λ

∥∥∥x − ∑
λ∈ΛN

cλψλ

∥∥∥ . N−γ as N →∞, for all x ∈ C.

Situation of an ONB: For the best N-term approximation xN of x , we have

‖x − xN‖2 =
∑
λ6∈ΛN

|cλ|2 =
∑
n>N

|〈x , ψλn〉|
2

Situation of a Frame: For the N-term approximation xN=
∑

λ∈ΛN
〈x , ψλ〉 ψ̃λ

of x consisting of the N largest coefficients |〈x , ψλ〉|, we only have

‖x − xN‖2 ≤ 1

A

∑
n>N

|〈x , ψλn〉|
2 .
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Two Main Viewpoints

Decomposition:

H 3 f −→ (〈f , ψλ〉)λ∈Λ.

Preprocessing (e.g. denoising).

Analysis (e.g. feature detection).

Clustering/Classification.

...

Efficient/Sparse Representations:

f =
∑
λ∈Λ

cλψλ.

Compression.

Regularization of inverse problems.

Ansatz functions for PDE solvers.

...
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Regularization of Inverse Problems

General Setting:
Given K : X → Y and y ∈ Y , compute x ∈ X with Kx = y .

Well-Posedness Conditions (Hadamard):

Existence: For each y ∈ Y , there exists some x ∈ X with Kx = y .

Uniqueness: Such an x ∈ X is unique.

Stability: limn→∞ Kxn → Kx implies limn→∞ xn → x .

Ill-Posed Inverse Problems:

Need for regularization!

Regularization Strategy:
A family of linear and bounded operators Rα : Y → X , α > 0, such that

lim
α→0

RαKx(=: xα) = x for all x ∈ X .
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Tikhonov Regularization

Standard Tikhonov Regularization:
Given an ill-posed inverse problem Kx = y , where K : X → Y , an
approximate solution xα ∈ X , α > 0, can be determined by minimizing

Jα(x) := ‖Kx − y‖2 + α‖x‖2, x ∈ X .

Generalization:

J̃α(x) := ‖Kx − y‖2 + αP(x), x ∈ X .

The penalty term P
ensures continuous dependence on the data,

incorporates properties of the solution.

Some Examples for P:

‖x‖TV , ‖x‖Hs , ‖(〈x , ψλ〉)λ‖1, ...
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Compressed Sensing (Candès, Romberg, Tao and Donoho; 2006)

Main Goal: Solve an underdetermined linear problem

y = Ax , A an n × N-matrix with n� N,

for a solution x ∈ RN admitting a sparsifying system (ψλ)λ.

Approach: Recover x by the `1-analysis minimization problem

min
x̃
‖(〈x̃ , ψλ〉)λ‖1 subject to y = Ax̃

Why `1?

Meta-Result: If (〈x , ψλ〉)λ is sufficiently sparse, and A is sufficiently
incoherent, then x can be recovered from Ax by `1 minimization.
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Two Main Viewpoints

Decomposition:

H 3 f −→ (〈f , ψλ〉)λ∈Λ.

Preprocessing (e.g. denoising).

Analysis (e.g. feature detection).

Clustering/Classification.

...

Efficient/Sparse Representations:
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Regularization of inverse problems.

Ansatz functions for PDE solvers.
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Computational Harmonic Analysis

Desiderata:

Multiscale representation system.

Convenient structure: Operators applied to one generating function.

Partition of Fourier domain.

Space/frequency localization.

Fast algorithms: x 7→ (〈x , ψλ〉)λ  x .

Optimality for the considered class.
 In this Talk: Modeling natural images!
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Modelling Anisotropic Structures
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What is an Image?

Intuitively edges are main structure.
Justified by neurophysiology.

Field et al., 1993
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Fitting Model

Definition (Donoho; 2001):
The set of cartoon-like functions E2(R2) is defined by

E2(R2) = {f ∈ L2(R2) : f = f0 + f1 · χB},

where ∅ 6= B ⊂ [0, 1]2 simply connected with C 2-boundary and bounded
curvature, and fi ∈ C 2(R2) with supp fi ⊆ [0, 1]2 and ‖fi‖C2 ≤ 1, i = 0, 1.

Theorem (Donoho; 2001):
Let (ψλ)λ ⊆ L2(R2). Allowing only polynomial depth search, we have the
following optimal behavior for f ∈ E2(R2):

‖f − fN‖2
2 � N−2 and |〈f , ψλn〉| . n−

3
2 as N, n→∞.
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Review of 2-D Wavelets

Definition (1D): Let φ ∈ L2(R) be a scaling function and ψ ∈ L2(R) be a
wavelet. Then the associated wavelet system is defined by

{φ(x −m) : m ∈ Z} ∪ {2j/2 ψ(2jx −m) : j ≥ 0,m ∈ Z}.

Definition (2D): A wavelet system is defined by

{φ(1)(x −m) : m ∈ Z2} ∪ {2jψ(i)(2jx −m) : j ≥ 0,m ∈ Z2, i = 1, 2, 3},

where ψ(1)(x) = φ(x1)ψ(x2),

φ(1)(x) = φ(x1)φ(x2) and ψ(2)(x) = ψ(x1)φ(x2),

ψ(3)(x) = ψ(x1)ψ(x2).

Theorem: Wavelets provide optimally sparse approximations for functions
f ∈ L2(R2), which are C 2 apart from point singularities:

‖f − fN‖2
2 � N−1, N →∞.
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Wavelet Decomposition: JPEG2000

Gitta Kutyniok (TU Berlin) Computational Harmonic Analysis BMS Summer School’16 24 / 59



Wavelet Decomposition: JPEG2000

Original

25% Compression 5% Compression
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What can Wavelets do?

Problem:

For f ∈ E2(R2), wavelets only achieve ‖f − fN‖2
2 � N−1, N →∞.

Isotropic structure of wavelets:

{2jψ(

(
2j 0
0 2j

)
x −m) : j ≥ 0,m ∈ Z2}.

Wavelets cannot sparsely represent cartoon-like functions.

Intuitive explanation:
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Main Goal

Design a Representation System which...

...fits into the framework of affine systems,

...provides an optimally sparsifying system for cartoons,

...allows for compactly supported analyzing elements,

...is associated with fast decomposition algorithms,

...treats the continuum and digital ‘world’ uniformly.

Non-Exhaustive List of Approaches:

Ridgelets (Candès and Donoho; 1999)

Curvelets (Candès and Donoho; 2002)

Contourlets (Do and Vetterli; 2002)

Bandlets (LePennec and Mallat; 2003)

Shearlets (K and Labate; 2006)
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What is a Shearlet?
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Scaling and Orientation

Parabolic scaling (‘width ≈ length2’):

A2j =

(
2j 0

0 2j/2

)
, j ∈ Z.

Historical remark:

1970’s: Fefferman und Seeger/Sogge/Stein.

Orientation via shearing:

Sk =

(
1 k
0 1

)
, k ∈ Z.

Advantage:

Shearing leaves the digital grid Z2 invariant.

Uniform theory for the continuum and digital situation.
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Shearlet Systems

Affine systems:

{| detM|1/2ψ(M · −m) : M ∈ G ⊆ GL2, m ∈ Z2}.

Definition (K, Labate; 2006):
For ψ ∈ L2(R2), the associated shearlet system is defined by

{2
3j
4 ψ(SkA2j · −m) : j , k ∈ Z,m ∈ Z2}.

Remarks:

Advantage: Generated by a unitary representation of the locally
compact group (R+ × R) nR2, the so-called shearlet group.

Disadvantage: Non-uniform treatment of directions.
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Example of Classical (Band-Limited) Shearlet

Let ψ ∈ L2(R2) be defined by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2( ξ2
ξ1

),

where

ψ1 wavelet, supp(ψ̂1) ⊆ [−2,−1
2 ] ∪ [ 1

2 , 2] and ψ̂1 ∈ C∞(R),

ψ2 ‘bump function’, supp(ψ̂2) ⊆ [−1, 1] and ψ̂2 ∈ C∞(R).
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(Cone-adapted) Shearlet Systems

Definition (K, Labate; 2006):
The (cone-adapted) shearlet system SH(c ;φ, ψ, ψ̃), c > 0, generated by
φ ∈ L2(R2) and ψ, ψ̃ ∈ L2(R2) is the union of

{φ(· − cm) : m ∈ Z2},

{23j/4ψ(SkA2j · −cm) : j ≥ 0, |k | ≤ d2j/2e,m ∈ Z2},

{23j/4ψ̃(S̃k Ã2j · −cm) : j ≥ 0, |k | ≤ d2j/2e,m ∈ Z2}.

Theorem (K, Labate, Lim, Weiss; 2006):
For ψ, ψ̃ classical shearlets, SH(1;φ, ψ, ψ̃) is a Parseval frame for L2(R2):

A‖f ‖2
2 ≤

∑
σ∈SH(φ,ψ,ψ̃)

|〈f , σ〉|2 ≤ B‖f ‖2
2 for all f ∈ L2(R2)

holds for A = B = 1.
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Proof of Parseval Frame Property

Specific conditions on a classical shearlet ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2( ξ2
ξ1

):

Wavelet:
∑

j∈Z |ψ̂1(2−jξ)|2 = 1 for a.e. ξ ∈ R.

‘Bump Function’:
∑

k=−1,0,1 |ψ̂2(ξ + k)|2 = 1 for a.e. ξ ∈ [−1, 1].

By the above properties of ψ1 and ψ2, we have∑
j∈Z

∑
k∈Z
|ψ̂(ST

−kA−jξ)|2

=
∑
j∈Z

∑
k∈Z
|ψ̂(2−jξ1, 2

−j/2ξ2 − 2−jξ1k)|2

=
∑
j∈Z

∑
k∈Z
|ψ̂1(2−jξ1)|2|ψ̂2(2j/2 ξ2

ξ1
− k)|2

=
∑
j∈Z
|ψ̂1(2−jξ1)|2 = 1.
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Compactly Supported Shearlets

Theorem (Kittipoom, K, Lim; 2012):

Let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let φ̂, ψ̂, ˆ̃ψ satisfy
certain decay conditions. Then there exists c0 such that SH(c ;φ, ψ, ψ̃)
forms a shearlet frame with controllable frame bounds for all c ≤ c0.

Remark: Exemplary class with B/A ≈ 4.

Theorem (Guo, Labate; 2007)(K, Lim; 2011):

Let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let φ̂, ψ̂, ˆ̃ψ satisfy
certain decay conditions. Then SH(c ;φ, ψ, ψ̃) = (ση)η provides an
optimally sparsifying system for f ∈ E2(R2), i.e., for N, n→∞,

‖f − fN‖2
2 . N−2(logN)3 and |〈f , σηn〉| . n−

3
2 (log n)

3
2 .
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Heuristic Argument

Estimate:

‖f − fN‖2
2 .

∑
n>N

(|〈f , σηn〉|)2 .
∑
n>N

(n−
3
2 )2 . N−2.

Case 1:

|〈f , ση〉| negligible!

Case 2:
|〈f , ση〉| negligible!

Case 3:
|〈f , ση〉| ≤ ‖f ‖∞‖ση‖1 . 2−

3
4
j

 |〈f , σηn〉| . n−
3
2
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Recent Approaches to Fast Shearlet Transforms

www.ShearLab.org:

Separable Shearlet Transform (Lim; 2009)

Digital Shearlet Transform (K, Shahram, Zhuang; 2011)

2D&3D (parallelized) Shearlet Transform (K, Lim, Reisenhofer; 2013)

Additional Code:

Filter-based implementation (Easley, Labate, Lim; 2009)

Fast Finite Shearlet Transform (Häuser, Steidl; 2014)

Shearlet Toolbox 2D&3D (Easley, Labate, Lim, Negy; 2014)

Theoretical Approaches:

Adaptive Directional Subdivision Schemes (K, Sauer; 2009)

Shearlet Unitary Extension Principle (Han, K, Shen; 2011)

Gabor Shearlets (Bodmann, K, Zhuang; 2013)

Gitta Kutyniok (TU Berlin) Computational Harmonic Analysis BMS Summer School’16 36 / 59



What about Curvelets...?
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Curvelets

Definition (Candès, Donoho; 2002):
Let

W ∈ C∞(R) be a wavelet with supp(W ) ⊆
(

1
2 , 2
)
,

V ∈ C∞(R) be a ‘bump function’ with supp(V ) ⊆ (−1, 1).

Then the curvelet system (γ(j ,l ,k))(j ,l ,k) is defined by

γ̂(j ,0,0)(r , ω) := 2−3j/4W
(
2−j r

)
V (2bj/2cω)

and
γ(j ,l ,k)(·) := γ(j ,0,0)(Rθ(j,l,k)

(· − x(j ,l ,k))).

Theorem (Candès, Donoho; 2002):
The curvelet system forms a Parseval frame for L2(R2).
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Comparison with Shearlets, I

Main Differences to Shearlets:

Not affine systems.

Based on rotation in contrast to shearing.

Only band-limited version available.

Performance on Separation:

Curvelets + Wavelets Shearlets + Wavelets
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Comparison with Shearlets, II

But there are also many Similarities...

Theorem (Candès, Donoho; 2002):
Curvelets provide optimally sparse approximations of f ∈ E2(R2), i.e.,

‖f − fN‖2
2 ≤ C · N−2 · (logN)3, N →∞.
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Towards a General Framework...
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General Framework

Introduce a Framework which...

...covers all systems known to sparsify cartoons.

...enables easy transfer of (sparsity) results between systems.

...allows categorization of systems with respect to sparsity behaviors.

...is general enough to allow construction of novel systems.

Crucial Ingredient: Parabolic scaling, i.e., a scaling matrix of the type

A2j =

(
2j 0

0 2j/2

)
, j ∈ Z,

since from
E (x2) ≈ 1

2
κx2

2 and E (`) = w

follows
w ≈ κ

2
`2 (‘width ≈ length2’). 2w

2`

(0, 0)
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Parametrization

Parameter space:
P := R+ × T× R2,

where (s, θ, x) ∈ P describes scale 2s , orientation θ, and location x .

Definition: A parametrization is a pair (Λ,ΦΛ), where Λ is a discrete index
set and ΦΛ is a mapping

ΦΛ :

{
Λ → P,
λ 7→ (sλ, θλ, xλ) .

Example: The canonical parametrization (Λ0,Φ0(λ)) is defined by

Λ0 :=
{

(j , `, k) ∈ Z4 : j ≥ 0, ` = −2b
j
2
c−1, · · · , 2b

j
2
c−1
}
,

and

Φ0(j , `, k) = (sλ, θλ, xλ) = (j , `2−bj/2cπ,R−θλA2−sλk).
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Parabolic Molecules

Definition (Grohs, K; 2014):
Let (Λ,ΦΛ) be a parametrization. Then (mλ)λ∈Λ is a system of parabolic
molecules of order (L,M,N1,N2) ∈ (Z+ ∪ {∞})2 × Z2

+, if, for all λ ∈ Λ,

mλ(x) = 23sλ/4g (λ) (A2sλRθλ (x − xλ)) , ΦΛ(λ) = (sλ, θλ, xλ),

such that, for all |β| ≤ L,∣∣∣∂β ĝ (λ)(ξ)
∣∣∣ . min

(
1, 2−sλ + |ξ1|+ 2−sλ/2|ξ2|

)M
〈|ξ|〉−N1 〈ξ2〉−N2 .

Control Parameters:

L: Spatial localization.

M: Number of directional (almost) vanishing moments.

N1,N2: Smoothness of mλ.
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Special Cases

This framework includes...

Parabolic Frame (Smith; 1998)

Second Generation Curvelets (Candès and Donoho; 2002)

Curvelet Molecules (Candès and Demanet; 2002)

Bandlimited Shearlets (K and Labate; 2006)

Frame Decompositions (Borup and Nielsen; 2007)

Shearlet Molecules (Guo and Labate; 2008)

Compactly Supported Shearlets (Kittipoom, K, and Lim; 2012)

...
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What about Wavelets, Ridgelets,...?
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Extension of Framework

Main Idea:

Introduction of a parameter α ∈ [0, 1] to measure the amount of
anisotropy.

For a > 0, define

Aα,a =

(
a 0
0 aα

)
.

Illustration:

α = 0 1
2 1

Ridgelets Curvelets/Shearlets Wavelets
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α-Molecules

Definition (Grohs, Keiper, K, Schäfer; 2016):
Let α ∈ [0, 1], and let (Λ,ΦΛ) be a parametrization. Then (mλ)λ∈Λ is a
system of α-molecules of order (L,M,N1,N2) ∈ (Z+ ∪ {∞})2 × Z2

+, if,
for all λ ∈ Λ,

mλ(x) = s
(1+α)/2
λ g (λ) (Aα,sλRθλ (x − xλ)) , ΦΛ(λ) = (sλ, θλ, xλ),

such that, for all |β| ≤ L,∣∣∣∂β ĝ (λ)(ξ)
∣∣∣ . min

(
1, s−1

λ + |ξ1|+ s
−(1−α)
λ |ξ2|

)M
〈|ξ|〉−N1 〈ξ2〉−N2 .

Examples:

Wavelets (α = 1)

Ridgelets (α = 0)

Shearlets, parabolic molecules in general (α = 1
2 )

α-Curvelets (α ∈ [0, 1])
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Metric Properties of Parametrizations

Definition:
Let α ∈ [0, 1], and let (Λ,ΦΛ) and (∆,Φ∆) be parametrizations. For
λ ∈ Λ and µ ∈ ∆, we define the index distance by

ωα (λ, µ) := ωα (ΦΛ(λ),Φ∆(µ)) := max
{ sλ
sµ
,
sµ
sλ

}
(1 + dα (λ, µ)) ,

with dα (λ, µ) defined by

s
2(1−α)
0 |θλ − θµ|2 + s2α

0 |xλ − xµ|2 +
s2

0

1 + s
2(1−α)
0 |θλ − θµ|2

|〈eλ, xλ − xµ〉|2.

where s0 = min{sλ, sµ} and eλ = (cos(θλ),− sin(θλ))T .

Remark: d 1
2

is the Hart Smith’s phase space metric on T× R2.
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Main Result: Decay of Cross-Grammian

Theorem (Grohs, Keiper, K, Schäfer; 2016):
Let α ∈ [0, 1], N > 0, and let (mλ)λ∈Λ, (pµ)µ∈∆ be systems of
α-molecules of order (L,M,N1,N2) with

L ≥ 2N, M > 3N − 3− α
2

, N1 ≥ N +
1 + α

2
, N2 ≥ 2N.

Then, for all λ ∈ Λ and µ ∈ ∆,

|〈mλ, pµ〉| . ωα (λ, µ)−N .
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...towards Sparse Approximation Properties!
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Sparsity Equivalence

Definition:
Let (mλ)λ∈Λ and (pµ)µ∈∆ be systems of α-molecules of order
(L,M,N1,N2) and (L̃, M̃, Ñ1, Ñ2), respectively, and let 0 < p ≤ 1. If∥∥∥(〈mλ, pµ〉)λ∈Λ,µ∈∆

∥∥∥
`p→`p

<∞,

then (mλ)λ∈Λ and (pµ)µ∈∆ are sparsity equivalent in `p.

Definition:
Let α ∈ [0, 1] and k > 0. Two parametrizations (Λ,ΦΛ) and (∆,Φ∆) are
(α, k)-consistent, if

sup
λ∈Λ

∑
µ∈∆

ωα (λ, µ)−k <∞ and sup
µ∈∆

∑
λ∈Λ

ωα (λ, µ)−k <∞.
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Sufficient Condition for Sparsity Equivalence

Theorem (Grohs, Keiper, K, Schäfer; 2016):
Let 0 < p ≤ 1, and let (mλ)λ∈Λ and (pµ)µ∈∆ be frames of α-molecules of
order (L,M,N1,N2) with (α, k)-consistent parametrizations (Λ,ΦΛ) and
(∆,Φ∆) for some k > 0. If

L ≥ 2
k

p
, M > 3

k

p
− 3− α

2
, N1 ≥

k

p
+

1 + α

2
, N2 ≥ 2

k

p
,

then (mλ)λ∈Λ and (pµ)µ∈∆ are sparsity equivalent in `p.
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Strategy

α-Curvelets

Shearlets

Wavelets

.  .  .
Shearlet Molecules

Ridgelets

.  .  .

α = 1
α = 0

α = ½

α = ½
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Generalized Image Model

Definition (K, Lemvig, Lim; 2012), (Keiper; 2012):
The set of cartoon-like functions Eβ(R2), β ∈ (1, 2] is defined by

Eβ(R2) = {f ∈ L2(R2) : f = f0 + f1 · χB},

where B ⊂ [0, 1]2 with ∂B a closed Cβ-curve, f0, f1 ∈ Cβ0 ([0, 1]2).

Theorem (Grohs, Keiper, K, Schäfer; 2016):
Let α ∈ [ 1

2 , 1), β = α−1. The Parseval frame of α-curvelets provides an
optimally sparse approximation of f ∈ Eβ(R2), i.e.,

‖f − fN‖2
2 ≤ C · N−β · (logN)β+1, N →∞.
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Sparse Approximation with α-Molecules

Theorem (Grohs, Keiper, K, Schäfer; 2016):
Let α ∈ [ 1

2 , 1), β = α−1, and let (mλ)λ∈Λ be a system of α-molecules of
order (L,M,N1,N2) such that

(i) (mλ)λ∈Λ constitutes a frame for L2(R2),

(ii) (Λ,ΦΛ) is (α, k)-consistent with the parametrization of α-curvelets
for all k > 0,

(iii) it holds that

L ≥ k(1+β),M ≥ 3k

2
(1+β)+

α− 3

2
,N1 ≥

k

2
(1+β)+

1 + α

2
,N2 ≥ k(1+β).

Then, for any ε > 0 and for any f ∈ Eβ(R2), (mλ)λ∈Λ satisfies

‖f − fN‖2
2 ≤ C · N−β+ε, N →∞,

α-Curvelets

Shearlets

Wavelets

.  .  .
Shearlet Molecules

Ridgelets

.  .  .

α = 1
α = 0

α = ½

α = ½
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Let’s conclude...
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What to take Home...?

Computational Harmonic Analysis provides various representation
systems such as wavelets, ridgelets, curvelets, and shearlets.

They provide sparse approximation for certain classes of images,
leading to

I Efficient decompositions for, e.g., the analysis/processing of images.
I Sparse representations for, e.g., regularization of inverse problems.

Shearlets provide an optimally sparsifying system for a model class of
functions being governed by anisotropic features.

α-Molecules provide a general framework for various systems from
computational harmonic analysis.

Sparse approximation results can be derived in a unified manner.
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THANK YOU!

References available at:

www.math.tu-berlin.de/∼kutyniok
Code available at:

www.ShearLab.org

Related Books:

Y. Eldar and G. Kutyniok
Compressed Sensing: Theory and Applications
Cambridge University Press, 2012.
G. Kutyniok and D. Labate
Shearlets: Multiscale Analysis for Multivariate Data
Birkhäuser-Springer, 2012.
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