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Matrix Inversion: © = A~ 1D

Can invert an n-by-n matrix in time O(n?)



Matrix Inversion: © = A~ 1D

Can invert an n-by-n matrix in time O(n?)
Strassen ‘69: Can actually do it in time O(n?*5!)

Coppersmith-Winograd ‘90: in time O(n?*-3%)



Matrix Inversion = Matrix Multiplication
n3 D, T3

Easy to do in time O(ninsns)

If can do it faster, can invert matrices faster.



Group Theoretic Approach [Cohn-Umans "03]

Can do matrix multiplication in algebra of a group G
if G has three sets of elements

Sl =n1 [S2|=n2 |53 =ng3
such that for a;,b; € .5;

albflagbglagbgl =1 I CLin-_l =1

Fast by discrete Fourier Transform if ). d? < mingng

(dimensions of irreducible representations)



Group Theoretic Approach [Cohn-Umans "03]

Cohn-Kleinberg-Szegedy-Umans ‘05
find groups that allow matrix inversion

in time O(n%4!)

If >, d3 small enough,

could invert in ime n2to(1)



Group Theoretic Approach [Cohn-Umans "03]

Cohn-Kleinberg-Szegedy-Umans ‘05
find groups that allow matrix inversion

in time O(n%4!)

If >, d3 small enough,

could invert in ime n2to(1)

Can we do it in time n2tol) ?



LU-Factorization (Gaussian Elimination)

Write A = L U, lower- and upper-triangular

1 -1 0 0 O 1 0 0 0 O 1 -1 0 O
-1 2 -1 0 O 1 1 0 0 O O 1 -1 O
O -1 2 -1 O —_ 0O -1 1 0 O O 0 1 -1
O 0 -1 2 -1 0O 0 -1 1 O O 0 0 1
O 0 0 -1 2 O 0 0 -1 1 O 0 0 O

Can be very fast if L and U have few non-zeros.

The inverse usually has Q(n?) non-zeros,
L and U can have O(n) non-zero entries.

P B OO0 O



Conjugate Gradient for Sparse Systems
[Hestenes ‘51, Stiefel| '52]

Let A have m non-zero entries.

Conjugate Gradient (as a direct method) solves

Axr = b
In time
O(mn)

If m is close to n, is much better than inversion!



Laplacian Linear Systems

Solve in time O(m log® m)
where m = number of non-zeros entries of 4

timeslog(1/e) for e-approximate solution.

|z — AT, < e]|A78]

Enables solution of all
symmetric, diagonally-dominant systemes.



Laplacian Quadratic Form of G = (V, F)

For £ : V — R

' Loz = ) (@(u)—z(v))’

(u,v)eEE



Laplacian Quadratic Form of G = (V, F)

For ¢ : V — IR

-
! Lox =




Laplacian Quadratic Form of G = (V, F)

For ¢ : V — IR

-
! Lox =

\_




Laplacian Quadratic Form for Weighted Graphs

G=(V,E,w)

w:FE — ]R_I_ assigns a positive weight to every edge

4 )
' Loz = Z W(w,v) (T(U) — 513(’0))2
. (u,v)eEE )

Matrix L is positive semi-definite
nullspace spanned by const vector, if connected



Laplacian Matrix of a Weighted Graph
—w(u,v) if (u,v) € E
La(u,v) = < d(u) if u=wv
0 otherwise
d(u) = 2 (puyer W(U; V)
the weighted degree of u

1

. 4 -1 0 -1

-1 4 -3 0

1 3 0 -3 4 -1
1

-1 0 -1 2
0 0 0

‘

is a diagonally dominant matrix

N O O O



Networks of Resistors [Kirchhoff]

Ohm'’s laws gives ¢ = v/r
In general, 1t = Lgv with w, ) = 1/7@0)

Minimize dissipated energy v’ Lo

oV

1V



Networks of Resistors

Ohm'’s laws gives ¢ = v/r

In general, 1 = Lgv with w(, ,y = 1/r @

Minimize dissipated energy v’ Lo

By solving Laplacian




Learning on Graphs [Zhu-Ghahramani-Lafferty ‘03]

Infer values of a function at all vertices
from known values at a few vertices.

Minimize z! Lox = Z W(y,v) (T () — w(”))Q
(u,v)EE

Subject to known values




Learning on Graphs [Zhu-Ghahramani-Lafferty ‘03]

Infer values of a function at all vertices
from known values at a few vertices.

Minimize z! Lox = Z W(y,v) (T () — w(v))Q
(u,v)EE

Subject to known values

05@ 0.
oé‘o's <

0.375 0.625

By solving Laplacian



Other Applications

Solving Elliptic PDEs.
Solving Maximum Flow Problems.

Computing Eigenvectors and Eigenvalues of
Laplacians of graphs.




Solving Laplacian Linear Equations Quickly

Fast when graph is simple,
by elimination.

Fast approximation when graph is complicated*,
by Conjugate Gradient

* = random graph or expander



Cholesky Factorization of Laplacians

1
] ‘ 3 -1 0
-1 2 -1
1 1 0 -1 2

‘ - -1 0 0

When eliminate a vertex,
connect its neighbors.

Also known as Y-A

R O O O K



Cholesky Factorization of Laplacians

=

When eliminate a vertex,
connect its neighbors.

Also known as Y-A

O O O O W

O o R K
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.00 1.
0 -0.

33
00
67
33

R O O O K

-0.33

-0.33
0.67



Cholesky Factorization of Laplacians

When eliminate a vertex,
connect its neighbors.

Also known as Y-A

O O O O W

O o R K

.67
.00
.33
.33

-1.00 -0.
2.00 -1.
-1.00 1.
0 -0.

33
00
67
33

R O O O K

.33

.33
.67



Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

Tree ,_Qf: #ops ~ O(|V])
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Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

Tree ,_Q:\: #ops ~ O(|V])



Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

O
Tree ._Q: ® #ops ~ O(|V])



Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

O
Tree ._1\: ® #tops ~ O(|V|)



Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?

Tree ,_Qf: #ops ~ O(|V])



Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?
Tree ,_Qf: #ops ~ O([V])

#ops ~ O(|V]3/2)
Lipton-Rose-Tarjan 79




Complexity of Cholesky Factorization

#tops ~ %, (degree of v when eliminate)?
Tree ,%: #ops ~ O([V])

#ops ~ O(|V]3/2)
Lipton-Rose-Tarjan 79

Expander like random, #tops 2 Q(|V]3)
but O(|V|) edges Lipton-Rose-Tarjan ‘79



Conductance and Cholesky Factorization

e ©
o
For SCV g ® :‘..‘0
0‘%‘.0 o
o © o o

(I)(S) _ # edges leaving S

sum degrees on smaller side, S or V — S

[ (I)G — mingcv (I)(S) }




Conductance and Cholesky Factorization

Cholesky slow when conductance high
Cholesky fast when low for G and all subgraphs

e ©
o
For SCV g ® :‘..‘0
0‘%‘.0 o
o © o o

(I)(S) _ # edges leaving S

sum degrees on smaller side, S or V — S

[ (I)G — mingcv (I)(S) }




Conductance

(S) def # edges leaving S

sum of degrees on smaller side

so t ‘ o—o




Conductance

(S) def # edges leaving S

sum of degrees on smaller side

o t$¢0

O(S) = 3/5



Conductance

def # edges leaving S
¢(S) = ,
sum of degrees on smaller side

def

P = mm o(S
-0—©O
\.<L_°1M p
— o

®(S) = 3/ min(25,23) = ¢



Cheeger’s Inequality and the Conjugate Gradient

Cheeger’s inequality (degree-d unweighted case)

1 A A
[572 < ®¢ < \/Q%J

A2 = second-smallest eigenvalue of L
~ d/mixing time of random walk

near d for expanders and random graphs



Cheeger’s Inequality and the Conjugate Gradient

Cheeger’s inequality (degree-d unweighted case)

1 A A
[572 < ®¢ < \/Q%J

A2 = second-smallest eigenvalue of L
~ d/mixing time of random walk

Conjugate Gradient finds € -approx solutionto L, x = b

in O(y/d/X2loge™)  multsby L,
is O(m®; loge ')  ops



Fast solution of linear equations

Conjugate Gradient fast when conductance high.

Elimination fast when low for G and all subgraphs.



Fast solution of linear equations

Conjugate Gradient fast when conductance high.

—

Planar graphs
-

Elimination fast when low for G and all subgraphs.

Problems:

Want speed of extremes in the middle



Fast solution of linear equations

Conjugate Gradient fast when conductance high.

—

Planar graphs
-

Elimination fast when low for G and all subgraphs.

Problems:

Want speed of extremes in the middle

Not all graphs fit into these categories!



Preconditioned Conjugate Gradient

Solve L, x = b by
Approximating L. by L, (the preconditioner)

In each iteration
solve a system in L,
multiply a vector by L,

€ -approximate solution after
O(\/k(Lg, Ly)loge 1) iterations
L. condition number/approx quality




Inequalities and Approximation

Ly <X Lg if L — L is positive semi-definite,
l.e. for all x,

el Lyxr < ol Lox

Example: if H is a subgraph of G
:L‘TL(;.CL‘ — Z W (u,v) (az(u) — w(v))Q

(u,v)EFE



Inequalities and Approximation

Ly <X Lg if L — L is positive semi-definite,
l.e. for all x,

el Lyxr < ol Lox

/{(LGaLH) S
iff cLy < La < ctLH for some ¢



Inequalities and Approximation

Ly <X Lg if L — L is positive semi-definite,
l.e. for all x,

el Lyx < ol Lox

/i(L(;,LH) St
if LH < LG < tLH
iff cLy < L <X ctLy forsomec

[Call H a t-approx of G if k(Lg,Ly) < t}




Other definitions of relative condition number

T

Aoy (LGLE) pseudo-inverse

N— min non-zero eigenvalue

k(Lg,Lpg) =




Spectral Sparsification of Graphs [S-Teng]

For every graph G with n vertices
there is a sparse graph H such that

K(Lg,LH) < 1+e¢€




Spectral Sparsification of Graphs [S-Teng]

For every graph G with n vertices
there is a sparse graph H such that

K(Lg,LH) < 1+e¢€

Sparse: exists H with 4n/e? edges
[Batson-S-Srivastava]

Can find H with O(nlogn/e?) edges
in nearly-linear time. [S-Srivastaval]



Sparsification by Random Sampling [s-Srivastava]

Include edge (u, v) with probability
Pu,v ™~ wu,vReﬁ(uv ”U)

Reff(U, U) = effective resistance between u and v
= 1/(current flow at one volt)

0.53V




Sparsification by Random Sampling [s-Srivastava]

Include edge (u, v) with probability
Pu,v ™~ wu,vReﬁ(uav)

If include edge, give weight Wy v /Pu.v

Can do all this in time O(nlog® n)



Spectral Sparsification of Graphs [S-Teng]

For every graph G with n vertices
there is a sparse graph H such that

K(Lg,LH) < 1+e¢€

Cansolve Lgx = b intime
O(n*lognloge ')

Using CG as direct solver for L gy



Vaidya’s Subgraph Preconditioners

Precondition G by a subgraph H

Ly <X Lg sojustneedtforwhich Lg <X{tLg

Easy to bound ¢ if H is a spanning tree

\ oo

And, easy to solve equations in L, by elimination



The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

o—9O
N \
/0—0—0

— o



The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

N



The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

path- Iek ¢ .k’



The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

N

path -len 5



The Stretch of Spanning Trees
Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

\ ‘_‘_‘\_?
path-len 1



The Stretch of Spanning Trees

Boman-Hendrickson ‘01: Lg < stg(T) Ly

Where stp(G) = Z path-length-(u, v)
(u,v)eEE

In weighted case, measure resistances of paths



Fundamental Graphic Inequality

060 O—0—0
S 7O

O. 1 (5,
N9 @ 6 0—0—0
7 7
7,@—6)—9:7
= (1,
0—0-06 "

edge < ktimes path of length &

With weights, corresponds to resistors in serial
(Poincaré inequality)

61



When T is a Spanning Tree

G T

Every edge of G not in T has unique pathinT

N[

62




When T is a Spanning Tree
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Low-Stretch Spanning Trees

For every G there is a 7 with

StT(G) < m!itot) where m = |E|

(Alon-Karp-Peleg-West "91)

str(G) < O(mlogmlog®logm)

(Elkin-Emek-S-Teng ‘04, Abraham-Bartal-Neiman '08)

[ Solve linear systems in time O (m?/?log m) ]




Low-Stretch Spanning Trees

For every G there is a 7 with

StT(G) < m!itot) where m = |E|

(Alon-Karp-Peleg-West "91)

str(G) < O(mlogmlog®logm)

(Elkin-Emek-S-Teng ‘04, Abraham-Bartal-Neiman '08)

4 . . )
Solve linear systems in time O (m?/?log m)

. With sparsification, O(m + n3/?log n))




Sparsifiers Low-Stretch Trees

1 2

Ultra-Sparsifiers [S-Teng]
Approximate G by a tree plus n/log”n edges

Ly < Lo <clog?n Ly




Ultra-Sparsifiers

Solve systems in H by:
1. Cholesky eliminating degree 1 and 2 nodes
2. recursively solving reduced system




Koutis-Miller-Peng ‘11

Solve in time O(mlogn log®logn log(1/e))

Build Ultra-Sparsifier by:
1. Constructing low-stretch spanning tree
2. Adding other edges with probability

Puv ~ path-length(u, v)



Conclusions

Laplacian Solvers are a powerful primitive!
Faster Maxflow: christiano-Kelner-Madry-S-Teng
Faster Random Spanning Trees: Kelner-Madry-Propp
All Effective Resistances: s-Srivastava

Can we solve all well-conditioned
graph problems in nearly-linear time?

Don’t fear large constants



Open Problems

Faster and better Low-Stretch Spanning Trees.
Faster high-quality sparsification.

Other families of linear systems.
From optimization, machine learning, etc.



Local Graph Clustering [S-Teng ‘04]

’
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in time O(|S])




Local Graph Clustering [S-Teng ‘04]

Prove: if S has small conductance ¢
uisarandomnodein$S
probably
find a set of small conductance, ¢'/21log®n
in time |S|log®n/¢




Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:
start at one node
at each step,
a fraction dries
of wet paint, half stays put, half to neighbors



Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node Q O—Q
1 0 0

at each step,
a fraction dries
of wet paint, half stays put, half to neighbors



Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node @ Q—@
0 0

at each step, 1/2

of wet paint, half stays put, half to neighbors



Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node @ @ @

at each st.ep, | 1/4 1/4
a fraction dries

of wet paint, half stays put, half to neighbors

with o =1/2



Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node —@

at each step, 1/8 1/8

of wet paint, half stays put, half to neighbors



Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node —@

at each st.ep, | 3/32 1/8 1/32
a fraction dries

of wet paint, half stays put, half to neighbors

with o =1/2



Using Approximate Personal PageRank Vectors
Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang 06
Spilling paint in a graph:

start at one node
at each step,

a fraction dries
of wet paint, half stays put, half to neighbors

Time doesn’t matter, can push paint whenever

Approximate: only push when a lot of paint



Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node @ @—@
1 0 0

at each step,
a fraction dries
of wet paint, half stays put, half to neighbors

Time doesn’t matter, can push paint whenever

Approximate: only push when a lot of paint



Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node @ @ @
1/4

at each st.ep, | 1/4
a fraction dries
of wet paint, half stays put, half to neighbors

Time doesn’t matter, can push paint whenever

Approximate: only push when a lot of paint



Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node @ @ @

at each st.ep, | 1/4 1/4
a fraction dries

of wet paint, half stays put, half to neighbors

Time doesn’t matter, can push paint whenever

Approximate: only push when a lot of paint



Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node @ @—@

at each st.ep, | 5/16 1/16 1/16
o fraction dries

of wet paint, half stays put, half to neighbors

Time doesn’t matter, can push paint whenever

Approximate: only push when a lot of paint



Volume-Biased Evolving Set Markov Chain

[Andersen-Peres ‘09]

Walk on sets of vertices
starts at one vertex, ends at V

Dual to random walk on graph

When start inside set of conductance ¢
find set of conductance ¢*/%log!/? n

with work |S|log®n/¢/?



Volume-Biased Evolving Set Markov Chain

[Andersen-Peres ‘09]

Walk on sets of vertices
starts at one vertex, ends at V

Dual to random walk on graph

When start inside set of conductance ¢
find set of conductance ¢*/%log!/? n

with work |S|log®n/¢/?



Open Problems

Faster and better Low-Stretch Spanning Trees.
Faster high-quality sparsification.
Other families of linear systems.

Faster and better local clustering.
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