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Challenges
B High complexity in space and time
B Large number of network components
B Random positioning and mobility of components

B Common communication technology



Let us consider networks with the following properties:
B random spatial distribution of network components
B static networks without time

B no additional infrastructure

www.wikipedia.de



Idea since the 1960’s (Gilbert): Use stochastic geometry to model telecommunication networks.

www.wikipedia.de



The Poisson point process

B A Poisson point process X is a random cloud of points without cluster points
(configuration of network components) with the following properties:

1. Point clouds in disjoint areas are stochastically independent.

2. The number of points in an area A C R is Poisson distributed with parameter
AVol(A):

—AVol(A) (AVOl(A))k

Px(X has k pointsin A) = e o




Gilbert graph

B Gilbert (1961): First network model g (X ) based on Poisson point porcess X .

B Two network components x, y can communicate if their distance is smaller then a
connectivity parameter r > 0: | — y| < r




Percolation

B Quality of network connectivity measured via size of connected components: clusters

B Existence of infinite cluster is called percolation

www.wikipedia.de



Phase transition

Percolation is a phase-transition phenomena in the intensity parameter \.

There exists 0 < A < oo with the property that
Ac = Ac(r) = inf{\ : P(g,(X) percolates) > 0}.

In the sub-critical regime A < A. we have local communication.
In the super-critical regime A > A. global communications is possible.
There is no known closed form expression for Ac as a function of 7.

Numerical approximations suggest that Ac ~ 1.436 for r = 1.



Poisson tesselations

Based on the Poisson point process, a large number of tessellations can be defined.
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Voronoi tessellation

Johnson-Mehl tessellation Relative neighborhood graph Minimum spanning forest



Poisson-Voronoi tesselation

B Also other names: Voronoi diagram, Voronoi decomposition, Voronoi partition, Dirichlet
tessellation or Thiessen Polygon

B Formal definition: The Voronoi cell around the point x € X is given by
Z(x)={z€R: |z —z| < |z —y|firaley € X \ {z}}.

B Used in a great number of scientific fields (Algorithmic geometry, material sciences, ...)
and applications (biology, chemistry, meteorology, crystallography, architektur, ...).

www.wikipedia.de
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Fundamental network characteristics

1. What is the probability that two users are connected dependent on their distance?
ps = P(0 e~ se1)?
2. What is the proportion of pairs of connected users?
ms = E(#(X e~ Y) € Bs(0))?
3. What is the probability that two users are connected if the number of hops is constraint?

Ps = P(0 e~ se1|# Hops < as)?



Lets get to it.






Voronoi structure: Avignon (France)

From: Open street maps



Manhattan grid structure: Bouake (Ivory Coast)
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From: Open street maps



Manhattan grid structure: Xian (China)
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From: Open street maps






Nested Manhattan grid structure with users




n tesselations for urban networks
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Essentially asymptotically connected Cox point processes

If the random intensity measure is essentially asymptotically connected, then 0 < A\. < oo.

B Examples are Poisson Voronoi tessellation (PVT) or the Poisson Delaunay tessellation.

B Manhattan and nested Manhattan grids are not stabilizing and proofs for non-triviality
should be much harder.

B Continuum percolation for general Cox processes can exhibit pathological effects, for
example A\, = 0 (see Btaszczyszyn & Yogeshwaran, 2013).



Approximations for \.

B Users form Cox point process X with random intensity A|du N S| where
B S realization of a street system, e.g., PVT

B PVTis characterized by length intensity v = E[|S N [-1/2,1/2]?|]



Approximations for \.

B Users form Cox point process X with random intensity A|du N S| where
B S realization of a street system, e.g., PVT

B PVTis characterized by length intensity v = E[|S N [-1/2,1/2]?|]

B Dense streets: approximate X by 2D Poisson point process with spatial intensity YA
B 4517 'r 2 is the approximate critical intensity for percolation of the Boolean
model
B Approximation I
e & 4.517 74712 becomes exact for v 1 co with Ay fixed.




Approximations for \.

B Users form Cox point process X with random intensity A|du N S| where
B S realization of a street system, e.g., PVT
B PVTis characterized by length intensity v = E[|S N [—1/2,1/2]?|]

B Sparse streets: approximate X by inhomogenous Bernoulli bond percolation with
parameter b’ where [ is edge length
B bt is critical percolation threshold. For PVT with distance parameter 1, by
simulations berit =~ 0.725
B Approximation II:
%exp(—)\cr) ~ — log(berit) becomes exact for y . 0 with %exp(—)\r) fixed.



Fundamental network characteristics

1. What is the probability that two users are connected dependent on their distance?
ps = P%(0 o se1)?
2. What is the expected number of pairs of connected users?
ms = E(#(X e~ Y) € Bs(0))?
3. What is the probability that two users are connected if the number of hops is constraint?

Ps =P°(0 ew se1|# Hops < as)?



Connection probability as a function of distance

B Palm calculus to ensure o on streets: Define Palm version of S via

orgy— L _
E°£(S) = V]E/Ql(oms £(S — u)du

B define device connection probability at relative position B via

E° [ 1{0 &~ vin g (X U{v})}dv
EO|S N B|

pe(\7,7y) =

where E° denote the Palm measure for S and X.

Theorem (Scaling invariance)

Let \, 7, > O be arbitrary. Then, for every a > 0,

PaB (a_l)‘v ar, a_lfy) = DB ()‘a T, f)/)



Large distance approximation

B ps = PQ, (seq) CONverges to the square of the percolation probability

o\ r,y) = P° (o @ 00N gr(X))

Let \,r,~v > O be arbitrary. Assume some cluster uniqueness and vacancy condition, then

e ==

More precisely, there exists ¢ > 0 such that |ps — 6%| < exp(—cs) for all sufficiently large s.



Percolation approximation w.r.t. A - universality

B no closed form expression available for 6




Percolation approximation w.r.t. A - universality

B no closed form expression available for 6

Conjecture

Letr,~v > 0. Then, O(A) = (A — A.)®/3C as A — A..

More precisely, lim_; x, % = 5/36.

B Smirnov and Werner 2001 for the triangular lattice

B Assumed to be universal, i.e., depend only on the local structure of the graph and the
dimension



Percolation approximation w.r.t. \ - large deviations

B finite box crossing: O () = P°(0 «~v X for some X; € X \ Qx (0))

Theorem (large \y)
Letr,y > 0 and K > 2ry be arbitrary. Then,
Ox(N) = 1 — exp(—2r\)
as A — 0o. More precisely,
lim A~ " log(1 — 0 (N\) = —2r.

A—o0

B expect statement to hold also for 8



Thank you for your attention.



